期刊文献+
共找到1,241篇文章
< 1 2 63 >
每页显示 20 50 100
STUDY ON VIBRATION REDUCTION BEHAVIOR FOR THE HYDRAULIC ENGINE MOUNT
1
作者 唐友刚 FROLOV K V SINIOV A V 《Transactions of Tianjin University》 EI CAS 2001年第4期238-241,共4页
In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equat... In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equations are set up with considering kinematics conditions and continuous of fluid,the dynamics behavior of HEM including dynamic stiffness of fluid and transferability of HEM are studied here.The example of hydraulic engine mount is calculated,it is shown that the vibration reduction performance of the hydraulic engine mount of this paper is better.The analysis method of vibration reduction behavior for HEM in this paper can be used in designing of the reduction vibration devices and the HEM in this paper can be used in the practical engineering for reduction vibration. 展开更多
关键词 hydraulic engine mount vibration reduction dynamic stiffness transfer function
下载PDF
Reliability Design for Impact Vibration of Hydraulic Pressure Pipeline Systems 被引量:17
2
作者 ZHANG Tianxiao LIU Xinhui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1050-1055,共6页
The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still inc... The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still incomplete.On the condition of having obtained the numerical characteristics of basic random parameters,several techniques and methods including the probability statistical theory,hydraulic technique and stochastic perturbation method are employed to carry out the reliability design for impact vibration of the hydraulic pressure system.Considering the instantaneous pressure pulse of hydraulic impact in pipeline,the reliability analysis model of hydraulic pipeline system is established,and the reliability-based optimization design method is presented.The proposed method can reflect the inherent reliability of hydraulic pipe system exactly,and the desired result is obtained.The reliability design of hydraulic pipeline system is achieved by computer programs and the reliability design information of hydraulic pipeline system is obtained.This research proposes a reliability design method,which can solve the problem of the reliability-based optimization design for the hydraulic pressure system with impact vibration practically and effectively,and enhance the quantitative research on the reliability design of hydraulic pipeline system.The proposed method has generality for the reliability optimization design of hydraulic pipeline system. 展开更多
关键词 hydraulic pressure impact vibration systems probability perturbation method reliability design
下载PDF
Vibration Performance Analysis of a Mining Vehicle with Bounce and Pitch Tuned Hydraulically Interconnected Suspension 被引量:7
3
作者 Jie Zhang Yuanwang Deng +3 位作者 Nong Zhang Bangji Zhang Hengmin Qi Minyi Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期195-211,共17页
The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti nes... The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system. 展开更多
关键词 hydraulically interconnected SUSPENSION Transfer matrix method Modal vibration analysis RIDE comfort Handling performance MINING VEHICLE
下载PDF
Asymmetric vibration characteristics of two-cylinder four-stroke single-piston hydraulic free piston engine 被引量:5
4
作者 任好玲 谢海波 +1 位作者 杨华勇 郭剑飞 《Journal of Central South University》 SCIE EI CAS 2014年第10期3762-3768,共7页
The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon ... The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE. 展开更多
关键词 hydraulic free piston engine free piston assembly vibration system nonlinear conservative autonomous system asymmetry
下载PDF
Research of vibrations effect on hydraulic valves in military vehicles 被引量:2
5
作者 MichałStosiak Mykola Karpenko +2 位作者 Olegas Prentkovskis Adam Deptuła Paulius Skackauskas 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期111-125,共15页
The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vi... The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vibration on the valve casing by installing a valve flexibly on a vibrating surface,i.e.,by introducing a material with known stiffness and damping characteristics between the valve casing and the vibrating surface-a steel spring package or special cushions made of elastomer material or of oilresistant rubber.The article also demonstrates that elastomer cushions placed inside the valve casingbetween the casing and the centering springs-can be used as a supplementary or alternative solution in the analyzed method for mitigating the transfer of vibrations.By using materials with appropriately selected elastic and dissipative properties,the effectiveness of vibro-isolation can be increased.The presented theoretical analyzes by linear and non-linear mathematical models have been verified experimentally. 展开更多
关键词 Military application hydraulic valve vibration Passive vibro-isolation Spring package
下载PDF
Friction coupling vibration characteristics analysis of aviation hydraulic pipelines considering multi factors 被引量:4
6
作者 Quan Lingxiao Guo Meng +2 位作者 Shi Junqiang Jiao Zongxia Guo Changhong 《High Technology Letters》 EI CAS 2018年第2期180-188,共9页
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed... As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft. 展开更多
关键词 aviation hydraulic pipeline fluid-structure interaction vibration friction coupling fluid parameters frequency domain characteristics
下载PDF
An extraction method for pressure beat vibration characteristics of hydraulic drive system based on variational mode decomposition 被引量:2
7
作者 QIAN Duo-zhou GU Li-chen +1 位作者 YANG Sha MA Zi-wen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期228-235,共8页
In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pre... In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pressure beat vibration phenomenon,which will seriously affect the smooth running of the hydraulic system.However,the modulated pressure signal also carries information related to the operating state of the hydraulic system,and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics,an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system,and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD). 展开更多
关键词 hydraulic drive system pressure beat vibration variational mode decomposition(VMD) characteristic extraction
下载PDF
Present Status and Prospect of High-Frequency Electro-hydraulic Vibration Control Technology 被引量:7
8
作者 Yi Liu Tao Wang +1 位作者 Guofang Gong Rujun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期1-16,共16页
Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu... Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform. 展开更多
关键词 Electro-hydraulic vibration equipment HIGH-FREQUENCY vibration control vibration waveform Twin-valve
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
9
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems 被引量:1
10
作者 Weng Falu Mao Weijie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期73-82,共10页
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping a... The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller. 展开更多
关键词 structural system electro-hydraulic servo system robust stabilization vibration attenuation parameter-dependent controller
下载PDF
Output Waveform Analysis of an Electro-hydraulic Vibrator Controlled by the Multiple Valves 被引量:10
11
作者 REN Yan RUAN Jian JIA Wen'ang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期186-197,共12页
The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vib... The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape. 展开更多
关键词 2D valves hydraulic multiple-valve system electro-hydraulic vibrator excited waveform
下载PDF
PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System 被引量:3
12
作者 LUO Xiaohui ZHU Yuquan HU Junhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期451-455,共5页
For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of tradition... For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro -hydraulic servo vibrating system. 展开更多
关键词 ELECTRO-hydraulic vibrating system PI iterative learning forgetting factor fuzzy inference
下载PDF
A soft-sensing model on hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine
13
作者 黄志雄 何清华 《Journal of Central South University》 SCIE EI CAS 2014年第5期1827-1832,共6页
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an... In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way. 展开更多
关键词 fuzzy support vector machine hydraulic excavator backhoe vibration excavating resistance soft-sensing technique
下载PDF
Low-speed instability analysis for hydraulic motor based on nonlinear dynamics 被引量:4
14
作者 LIN Rong-chuan WEI Sha-sha YUAN Xiao-ling 《Journal of Coal Science & Engineering(China)》 2010年第3期328-332,共5页
A nonlinear dynamics model and a mathematical expression were set up to investigatethe mechanism and conditions of vibration creep acceleration.The model showsthat hydraulic spring and nonlinear friction are major fac... A nonlinear dynamics model and a mathematical expression were set up to investigatethe mechanism and conditions of vibration creep acceleration.The model showsthat hydraulic spring and nonlinear friction are major factors that can affect low-speed instability.The mathematic model was established to obtain the change rule of speed andinstantaneous acceleration of the hydraulic motor.Then, Matlab was used to simulate theeffect of nonlinear friction force and hydraulic motor parameters such as coefficient of leakand compression ratio, etc., under low speed.Finally, some measures were proposed toimprove the low-speed stability of the hydraulic motor. 展开更多
关键词 hydraulic motor nonlinear dynamics hydraulic spring vibration creep accel- eration computer simulation
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:2
15
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Simulation Research on Dynamic Characteristics of Hydraulic Mount 被引量:1
16
作者 Yanhua Liu Xin Guan +1 位作者 Pingping Lu Rui Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期336-344,共9页
At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to ana... At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to analyze hydraulic mounts for a rapid and accurate understanding of the influence of the different mounting parameters on the dynamic stiffness and loss angle.The aims of this study were to investigate the nonlinear dynamic characteristics of a hydraulic mount,and to identify the parameters that affect the dynamic stiffness and loss angle using MATLAB software programs to obtain the influence curves of the parameters,so as to use suitable parameters as the basis for vibration analysis.A nonlinear mechanical model of a hydraulic mount was established according to the basic principles of fluid dynamics.The dynamic stiffness and loss angle of the dimensionless expression were proposed.A numerical calculation method for the dynamic performance evaluation index of the hydraulic mount was derived.A one-to-one correspondence was established between the structural parameters and peak frequency of the evaluation index.The accuracy and applicability of the mechanical model were verified by the test results.The results demonstrated the accuracy of the nonlinear mechanical model of the hydraulic mount,and the vehicle driving comfort was greatly improved by the optimization of the structural parameters. 展开更多
关键词 hydraulic mount vibration analysis Dynamic characteristics Calculation method
下载PDF
HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER 被引量:1
17
作者 FENG Yonghui ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期68-73,共6页
Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz... Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance. 展开更多
关键词 High-speed elevator Horizontal vibrations hydraulic active guide roller system Fuzzy logic control
下载PDF
APPLICATION OF FRF ESTIMATOR BASED ON ERRORS-IN-VARIABLES MODEL IN MULTI-INPUT MULTI-OUTPUT VIBRATION CONTROL SYSTEM
18
作者 GUAN Guangfeng CONG Dacheng HAN Junwei LI Hongren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期101-105,共5页
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i... The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system. 展开更多
关键词 Multi-input multi-output(MIMO) system Errors-in-variables(EV) model 6-DOF hydraulic vibration table Waveform replication
下载PDF
Vibration Control of Vertical Turbine Pump by Optimization of Vane Pitch Tolerances of an Impeller Using Statistical Techniques
19
作者 Ravindra Birajdar Appasaheb Keste Shravan Gawande 《Sound & Vibration》 EI 2021年第4期305-327,共23页
The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine(VT)pump impeller.For this purpose,the study is divided into two parts viz.to find the critical hydraulic eccentricity ... The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine(VT)pump impeller.For this purpose,the study is divided into two parts viz.to find the critical hydraulic eccentricity of a VT pump impeller by way of numerical simulations and design of experiments to find the vane pitch tolerance using critical hydraulic eccentricity.The effect of impeller vane pitch deviations on hydraulic unbalance is examined for a vertical turbine pump using Design of Experiments(DOE).A suitable orthogonal matrix has been selected with vane pitch at different axial locations of an impeller as the control factors.Hydraulic eccentricity,which is the output of the DOE experiments is analyzed using S/N ratio,ANOM and regression analysis to find the significant control factor effecting the hydraulic unbalance and hence vibrations.The vane pitch deviation at outlet and inlet of impeller shroud geometry are found to be the most critical factor affecting the pump vibrations. 展开更多
关键词 Vertical turbine pump vibrations design of experiments hydraulic eccentricity
下载PDF
A Method of Evaluating the Effectiveness of a Hydraulic Oscillator in Horizontal Wells
20
作者 Zhen Zhong Yadong Li +1 位作者 Yuxuan Zhao Pengfei Ju 《Sound & Vibration》 EI 2023年第1期15-27,共13页
Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to sim... Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells. 展开更多
关键词 hydraulic oscillator axial vibration friction reduction dynamic effective tractoring force placement optimization
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部