The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can man...The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.展开更多
Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent ...Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent control of the spatial profile for each pulse limit their advancement.We present a pulse manipulation technique for producing spectrally separated GHz burst pulses from a single ultrashort pulse,where each pulse is spatially shapable.We demonstrated the production of pulse trains at intervals of 0.1 to 3 ns in the 800-and 400-nm wavelength bands and applied them to ultrafast single-shot transmission spectroscopic imaging(4 Gfps)of laser ablation dynamics with two-color sequentially timed all-optical mapping photography.Furthermore,we demonstrated the production of pulse trains containing a shifted or dual-peak pulse as examples of individual spatial shaping of GHz burst pulses.Our proposed technique brings unprecedented spatiotemporal manipulation of GHz burst pulses,which can be useful for a wide range of laser applications.展开更多
Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference t...Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.展开更多
To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce...To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce twocolor double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation based on a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.展开更多
Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating cir...Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.展开更多
Three coupling coefficients are defined to describe spatiotemporal coupling in ultrashort pulses. With these coupling coefficients, the first-order spatiotemporal couplings of Gaussian pulse and beam are described ana...Three coupling coefficients are defined to describe spatiotemporal coupling in ultrashort pulses. With these coupling coefficients, the first-order spatiotemporal couplings of Gaussian pulse and beam are described analytically. Also, the first-order and the second-order spatiotemporal couplings caused by angular dispersion elements are studied using these coupling coefficients. It can be shown that these coupling coefficients are dimensionless and normalized, and readily indicate the severity of spatiotemporal coupling.展开更多
This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and...This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.展开更多
The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm ...The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources.展开更多
The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation ...The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation process of highorder harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied.In this paper,we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field.It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics,which can be used to synthesize isolated attosecond pulses.Through the analysis of the wave packets evolution and the classical motion trajectories of the electron,it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle.The influence of the relative phase of the two pulses on the harmonics is further analyzed,and it is observed that this phenomenon is sensitive to the relative phase,but it can still generate isolated attosecond pulses within a certain phase.展开更多
An exact analytic expression for an ultrashort hollow-Airy wave packet is presented beyond the slowly varying envelope approximation. The hollow-Airy wave packet combines the hollow-Gaussian beam in the spatial domain...An exact analytic expression for an ultrashort hollow-Airy wave packet is presented beyond the slowly varying envelope approximation. The hollow-Airy wave packet combines the hollow-Gaussian beam in the spatial domain and the Airy pulse in the temporal domain. The spatiotemporal propagation dynamics of the ultrashort hollow- Airy pulse are analyzed by the numerical simulations. During the propagation in free space, the spatial intensity profile evolves from hollow-Gaussian to Gaussian shape; the temporal intensity profile retains Airy shape over several Rayleigh ranges. The acceleration property of the ultrashort Airy pulse is also demonstrated.展开更多
In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a...Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.展开更多
In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evo...In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (I^HM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schrodinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.展开更多
Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative...Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative carrierenvelope phase (hereinafter referred to as the relative phase) on resonant propagation of two-colour femtosecond ultrashort laser pulses in a V-type three-level atomic medium. It is found that the pulse splitting occurs for a smaller value of relative phase; when the value of relative phase increases to a certain value, only the variation of pulse shape is present and the pulse splitting does not occur any more; moreover, when the value of relative phase is smaller, the pulse group velocity is larger. The relative phase also has an obvious effect on population and spectral property. Different population transfers can be realized by adjusting the value of relative phase. Generally speaking, for the pulses with smaller areas their spectral strengths and frequency ranges decrease obviously with the value of relative phase increasing; for the pulses with larger areas, with value of the relative phase increasing, their spectral strengths decrease remarkably but the relative strengths of the higher frequency components increase significantly, while the spectral frequency range is not varied evidently.展开更多
This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the ph...This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.展开更多
The quasistatic magnetic field created in the interaction of intense ultrashort laser pulses with underdense plasmas has been investigated by two-dimensional particle simulation.The relativistic ponderomotive force an...The quasistatic magnetic field created in the interaction of intense ultrashort laser pulses with underdense plasmas has been investigated by two-dimensional particle simulation.The relativistic ponderomotive force and plasma wave excited in self-modulation processes can drive intense electron current mainly in the propagation direction.As a result,an azimuthal,multi-mega Gauss order quasi-static magnetic field can be generated around the laserbeam.展开更多
The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electr...The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electron quantum ring from ground state to excited states with a number of parameters is shown and explained.The energy levels and wavefunctions of the system in the presence of static electric field are found by solving the time-independent Schrodinger equation numerically by the finite difference method.The shape of the pulse plays a dominant role on the dynamics.展开更多
We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a sub- wavelength structure, which is described by the full Maxwell-Bloch equations without the frame of sl...We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a sub- wavelength structure, which is described by the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses.展开更多
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crysta...Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.展开更多
The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expan...The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.展开更多
文摘The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
基金supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) (Grant No.JPMXS0118067246)K.S.was supported by JST ACT-X (JPMJAX22K8).Y.I.and A.I.were partly supported by JST PRESTO (JPMJPR2003 and JPMJPR1902,respectively)K.N.was partly supported by JST FOREST (JPMJFR215C).
文摘Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent control of the spatial profile for each pulse limit their advancement.We present a pulse manipulation technique for producing spectrally separated GHz burst pulses from a single ultrashort pulse,where each pulse is spatially shapable.We demonstrated the production of pulse trains at intervals of 0.1 to 3 ns in the 800-and 400-nm wavelength bands and applied them to ultrafast single-shot transmission spectroscopic imaging(4 Gfps)of laser ablation dynamics with two-color sequentially timed all-optical mapping photography.Furthermore,we demonstrated the production of pulse trains containing a shifted or dual-peak pulse as examples of individual spatial shaping of GHz burst pulses.Our proposed technique brings unprecedented spatiotemporal manipulation of GHz burst pulses,which can be useful for a wide range of laser applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574082)the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS050)
文摘Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.
基金supported by the National Natural Science Foundation of China(Nos.11475202,11405187)Youth Innovation Association of Chinese Academy of Sciences,and Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDJ-SSWSLH001)National Key R&D Program of China(No.2016YFA0401900)
文摘To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce twocolor double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation based on a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61690223,11561121002,61521093,11227902,11404356,and 11574332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)
文摘Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.
基金supported by the Program for New Century Excellent Talents in University(NCET),China(Grant No.NCET-05-0784)
文摘Three coupling coefficients are defined to describe spatiotemporal coupling in ultrashort pulses. With these coupling coefficients, the first-order spatiotemporal couplings of Gaussian pulse and beam are described analytically. Also, the first-order and the second-order spatiotemporal couplings caused by angular dispersion elements are studied using these coupling coefficients. It can be shown that these coupling coefficients are dimensionless and normalized, and readily indicate the severity of spatiotemporal coupling.
基金supported by the Tiptop-Talent Fund from Harbin University of Science and Technology
文摘This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.
基金Project supported by the National Science Instruments Major Project of China(Grant No.2012YQ130125)the National Natural Science Foundation of China(Grant Nos.11405159,11375161,and 11174259)the Science and Technology on Plasma Physics Laboratory at CAEP(Grant No.9140C680302130C68242)
文摘The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12074145,11627807,and 11975012)+2 种基金the Research Foundation for Basic Research of Jilin Province,China(Grant No.20220101003JC)the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)the Outstanding Youth Project of Taizhou University(Grant No.2019JQ002)。
文摘The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation process of highorder harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied.In this paper,we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field.It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics,which can be used to synthesize isolated attosecond pulses.Through the analysis of the wave packets evolution and the classical motion trajectories of the electron,it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle.The influence of the relative phase of the two pulses on the harmonics is further analyzed,and it is observed that this phenomenon is sensitive to the relative phase,but it can still generate isolated attosecond pulses within a certain phase.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61475139 and 11174249the National HighTechnology Research and Development of China under Grant No 2011AA060504the Fundamental Research Funds for the Central Universities under Grant No 2014FZA3002
文摘An exact analytic expression for an ultrashort hollow-Airy wave packet is presented beyond the slowly varying envelope approximation. The hollow-Airy wave packet combines the hollow-Gaussian beam in the spatial domain and the Airy pulse in the temporal domain. The spatiotemporal propagation dynamics of the ultrashort hollow- Airy pulse are analyzed by the numerical simulations. During the propagation in free space, the spatial intensity profile evolves from hollow-Gaussian to Gaussian shape; the temporal intensity profile retains Airy shape over several Rayleigh ranges. The acceleration property of the ultrashort Airy pulse is also demonstrated.
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305157)the Development Foundation of China Academy of Engineering Physics Laboratory(CAEPL)(Grant No.2013A0401019)
文摘Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.
基金Supported by the National Natural Science Foundation of China (Grant Nos 10576012 and 60538010), the Program for New Century Excellent Talents in University and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040532005).
文摘In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (I^HM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schrodinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806000)the National Natural Science Foundation of China (Grant No. 10875072)the Open Fund of the State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics
文摘Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative carrierenvelope phase (hereinafter referred to as the relative phase) on resonant propagation of two-colour femtosecond ultrashort laser pulses in a V-type three-level atomic medium. It is found that the pulse splitting occurs for a smaller value of relative phase; when the value of relative phase increases to a certain value, only the variation of pulse shape is present and the pulse splitting does not occur any more; moreover, when the value of relative phase is smaller, the pulse group velocity is larger. The relative phase also has an obvious effect on population and spectral property. Different population transfers can be realized by adjusting the value of relative phase. Generally speaking, for the pulses with smaller areas their spectral strengths and frequency ranges decrease obviously with the value of relative phase increasing; for the pulses with larger areas, with value of the relative phase increasing, their spectral strengths decrease remarkably but the relative strengths of the higher frequency components increase significantly, while the spectral frequency range is not varied evidently.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60538010, 10335030 and 10376009), the Science and Technology Commission of Shanghai, China (Grant Nos 05JC14005 and 05SG02), and the Graduate Science and Technology Innovation Foundation of Fudan University, China.
文摘This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.
基金Supported by the National High-Tech.ICF Committee in China,the National Natural Science Foundation of China under Grant No.19735620,and National Basic Research Project“Nonlinear Science”in China.
文摘The quasistatic magnetic field created in the interaction of intense ultrashort laser pulses with underdense plasmas has been investigated by two-dimensional particle simulation.The relativistic ponderomotive force and plasma wave excited in self-modulation processes can drive intense electron current mainly in the propagation direction.As a result,an azimuthal,multi-mega Gauss order quasi-static magnetic field can be generated around the laserbeam.
基金the University of Delhi for providing funds under the 'Scheme to Strengthen Research and Development'
文摘The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electron quantum ring from ground state to excited states with a number of parameters is shown and explained.The energy levels and wavefunctions of the system in the presence of static electric field are found by solving the time-independent Schrodinger equation numerically by the finite difference method.The shape of the pulse plays a dominant role on the dynamics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61008016 and 61108006)the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2010JQ1002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106101120020)the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDC155)
文摘We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a sub- wavelength structure, which is described by the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CCA03500), and the National Natural Science Foundation of China (Grant No 60177016).
文摘Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10535070 and 10674145)the National Basic Research Program of China (Grant No 2006CB806000)the Shanghai Supercomputer Center (SSC)
文摘The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.