Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of t...Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.展开更多
The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The ex...The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.展开更多
Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dy...Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dynamic mechanical analysis (DMA) show that the vulcanized FPM/PHSR (10 phr) blend has only one T(g) temperature, demonstrating the well compatibility between FPM and PHSR. The thermogravimetric analysis (TGA) demonstrates that the PHSR do little damage to the thermal stability of FPM. The vulcanization characteristics of the FPM/PHSR blends were analyzed by using oscillating disc rheometer (ODR). The results show that FPM/PHSR blends have smaller S(min) values and longer scorch time than that of FPM with the same level of bisphenol AF curing agent. It means that FPM/PHSR blends have better processability and curing security. Better mechanical properties can be gained for FPM/PHSR blends at appropriate level of PHSR.展开更多
The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-Si...The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.展开更多
Casting is an important rubber manufacturing process for both production and material developments. A quick and flexible way of testing the constitutive materials properties of rubber products is very important for op...Casting is an important rubber manufacturing process for both production and material developments. A quick and flexible way of testing the constitutive materials properties of rubber products is very important for optimising the processing parameters and quality control. In many cases, standard tests such as tensile or compression tests are time consuming and require a large volume of materials. This work reports some recent work in using a combined numerical and experimental approach to characterise the properties of rubber materials during a casting process. Durometer shore hardness is used to test silicone rubbers (as a model material) with different compositions on different moulding planes and the linear elastic property is estimated from the hardnesses. The predicted properties are systematically compared with the experimental tests on hard and soft silicone rubber samples with different compositions. The work shows that shore hardness can be used as an effective way to monitor the materials properties during amoulding process for process optimisation and quality control.展开更多
文摘Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.
基金supported by the program for Major Project of the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)and(VSN 201602),(2017-K-23)
文摘The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.
基金supported by the National Natural Science Foundation of China(No.50873036).
文摘Self-vulcanizing blends of phenol hydroxy silicone rubber (PHSR) and fluoroelastomer (FPM) were prepared. Vulcanized rubbers with lower glass transition temperature (T(g)) were successfully obtained. The results of dynamic mechanical analysis (DMA) show that the vulcanized FPM/PHSR (10 phr) blend has only one T(g) temperature, demonstrating the well compatibility between FPM and PHSR. The thermogravimetric analysis (TGA) demonstrates that the PHSR do little damage to the thermal stability of FPM. The vulcanization characteristics of the FPM/PHSR blends were analyzed by using oscillating disc rheometer (ODR). The results show that FPM/PHSR blends have smaller S(min) values and longer scorch time than that of FPM with the same level of bisphenol AF curing agent. It means that FPM/PHSR blends have better processability and curing security. Better mechanical properties can be gained for FPM/PHSR blends at appropriate level of PHSR.
基金the Guangdong Province Science and Technology projects(No.2017A040402005)Guangdong Bureau of Quality and Technical Supervision Science and Technology projects(No.2017CT30)for financial support of this work
文摘The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.
文摘Casting is an important rubber manufacturing process for both production and material developments. A quick and flexible way of testing the constitutive materials properties of rubber products is very important for optimising the processing parameters and quality control. In many cases, standard tests such as tensile or compression tests are time consuming and require a large volume of materials. This work reports some recent work in using a combined numerical and experimental approach to characterise the properties of rubber materials during a casting process. Durometer shore hardness is used to test silicone rubbers (as a model material) with different compositions on different moulding planes and the linear elastic property is estimated from the hardnesses. The predicted properties are systematically compared with the experimental tests on hard and soft silicone rubber samples with different compositions. The work shows that shore hardness can be used as an effective way to monitor the materials properties during amoulding process for process optimisation and quality control.