This study was conducted to explore the regulation mechanism for key protein expression. The Microcystis treated by short-time ultrasonic wave was select-ed to analyze the total protein based on 2-DE. The results show...This study was conducted to explore the regulation mechanism for key protein expression. The Microcystis treated by short-time ultrasonic wave was select-ed to analyze the total protein based on 2-DE. The results showed that there were 71 up-regulated protein spots, 56 down-regulated protein spots, 54 new protein spots and 21 protein spots disappeared under short-time ultrasonic stress. Eight dif-ferential proteins were chosen for further MALDI-TOFTOF/MS analysis, and the re-sults showed that 2 unknown proteins and 6 functional proteins were detected. These proteins were relevant to some physiological processes, such as antioxidation and anti-inflammatory process, phosphate synthesis and electron transfer, which is beneficial to the metabolic balance and self-protection under short-time ultrasonic stress.展开更多
基金Supported by National Natural Science Foundation of China(513080061006239)~~
文摘This study was conducted to explore the regulation mechanism for key protein expression. The Microcystis treated by short-time ultrasonic wave was select-ed to analyze the total protein based on 2-DE. The results showed that there were 71 up-regulated protein spots, 56 down-regulated protein spots, 54 new protein spots and 21 protein spots disappeared under short-time ultrasonic stress. Eight dif-ferential proteins were chosen for further MALDI-TOFTOF/MS analysis, and the re-sults showed that 2 unknown proteins and 6 functional proteins were detected. These proteins were relevant to some physiological processes, such as antioxidation and anti-inflammatory process, phosphate synthesis and electron transfer, which is beneficial to the metabolic balance and self-protection under short-time ultrasonic stress.