期刊文献+
共找到357篇文章
< 1 2 18 >
每页显示 20 50 100
Magnetic and electronic properties of bulk and two-dimensional FeBi_(2)Te_(4):A first-principles study
1
作者 王倩倩 赵建洲 +4 位作者 吴维康 周胤宁 Qile Li Mark T.Edmonds 杨声远 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期450-456,共7页
Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostruct... Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect. 展开更多
关键词 FeBi_(2)Te_(4) two-dimensional(2d)magnetism noncollinear antiferromagnet quantum anomalous Hall effect first-principles calculation
下载PDF
An Improved Coupled Level Set and Continuous Moment-of-Fluid Method for Simulating Multiphase Flows with Phase Change
2
作者 Zhouteng Ye Cody Estebe +8 位作者 Yang Liu Mehdi Vahab Zeyu Huang Mark Sussman Alireza Moradikazerouni Kourosh Shoele Yongsheng Lian Mitsuhiro Ohta M.Yousuff Hussaini 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1034-1069,共36页
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO... An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics. 展开更多
关键词 Moment-of-Fluid(MOF) Surface tension Two phase flow Phase change deforming boundaries with change(s)in topology two-dimensional(2d) Three-dimensional(3d)axisymmetric 3d
下载PDF
A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
3
作者 苏静明 方士辉 +1 位作者 洪炎 温言 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期233-243,共11页
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con... A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc. 展开更多
关键词 color image encryption discrete cosine transform two-dimensional(2d)coupled chaotic system diagonal scrambling
下载PDF
Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress 被引量:1
4
作者 Lei Wang Sidong Shen +2 位作者 Tianyi Li Minjie Wen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1603-1614,共12页
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di... In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress. 展开更多
关键词 Semi-analytical solutions two-dimensional(2d)plane strain CONSOLIdATION Unsaturated soils depth-dependent stress Laplace transform
下载PDF
Green's functions of two-dimensional piezoelectric quasicrystal in half-space and bimaterials 被引量:1
5
作者 Xiaoyu FU Xiang MU +2 位作者 Jinming ZHANG Liangliang ZHANG Yang GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期237-254,共18页
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti... In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree. 展开更多
关键词 Green’s function two-dimensional(2d)piezoelectric quasicrystal(PQC) Stroh formalism HALF-SPACE BIMATERIAL
下载PDF
Waveguide-integrated optical modulators with two-dimensional materials
6
作者 Haitao Chen Hongyuan Cao +2 位作者 Zejie Yu Weike Zhao Daoxin Dai 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期8-25,共18页
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr... Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed. 展开更多
关键词 optical modulation two-dimensional(2d)materials ON-CHIP WAVEGUIdE
下载PDF
Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
7
作者 郭宏阳 张平 +2 位作者 杨生鹏 王少萌 宫玉彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期268-276,共9页
The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the... The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the coupling efficiency between two-dimensional(2D)plasmons and THz radiation.In this work,we investigate the plasma oscillation,electromagnetic radiation,and the integration characteristics of Ga N HEMT targeting at a high THz radiation power source.The quantitative radiation power and directivity are obtained for integrated Ga N HEMT array with different array periods and element numbers.With the same initial plasma oscillation phase among the HEMT units,the radiation power of the two-element HEMT array can achieve 4 times as the single HEMT radiation power when the array period is shorter than 1/8electromagnetic wavelength.In addition,the radiation power of the HEMT array varies almost linearly with the element number,the smaller array period can lead to the greater radiation power.It shows that increasing the array period could narrow the main radiated lobe width while weaken the radiation power.Increasing the element number can improve both the radiation directivity and power.We also synchronize the plasma wave phases in the HEMT array by adopting an external Gaussian plane wave with central frequency the same as the plasmon resonant frequency,which solves the problem of the radiation power reduction caused by the asynchronous plasma oscillation phases among the elements.The study of the radiation power amplification of the one-dimensional(1D)Ga N HEMT array provides useful guidance for the research of compact high-power solid-state terahertz sources. 展开更多
关键词 GaN HEMT array two-dimensional(2d)plasmons THz emission
下载PDF
Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg–de Vries equation
8
作者 Yulei Cao Peng-Yan Hu +1 位作者 Yi Cheng Jingsong He 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期205-214,共10页
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a... Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems. 展开更多
关键词 two-dimensional(2d)Korteweg-de Vries(KdV)equation Bilinear method Backlund transformation Lax pair deformed 2d rogue wave
下载PDF
Origin of itinerant ferromagnetism in two-dimensional Fe_(3)GeTe_(2)
9
作者 Xi Chen Zheng-Zhe Lin Li-Rong Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期119-124,共6页
Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and ... Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and Fe_(3)GeTe_(2) opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_(3)GeTe_(2).We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_(3)GeTe_(2).Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems. 展开更多
关键词 two-dimensional(2d)ferromagnetism spin wave magnetic anisotropy
下载PDF
Two-dimensional hexagonal Zn3Si2 monolayer:Dirac cone material and Dirac half-metallic manipulation
10
作者 Yurou Guan Lingling Song +4 位作者 Hui Zhao Renjun Du Liming Liu Cuixia Yan Jinming Cai 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期418-423,共6页
The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional the... The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics. 展开更多
关键词 two-dimensional(2d)dirac cone material dirac half-metal first-principles calculation spin-orbit coupling
下载PDF
CAUCHY PROBLEM FOR LINEARIZED SYSTEM OF TWO-DIMENSIONAL ISENTROPIC FLOW WITH AXISYMMETRICAL INITIAL DATA IN GAS DYNAMICS
11
作者 Zhang Hua Sheng Wancheng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第1期30-40,共11页
The explicit solution to Cauchy problem for linearized system of two-dimensional isentropic flow with axisymmetrical initial data in gas dynamics is given.
关键词 Cauchy prohlem with axisymmetrical initial data linearized system 2-d isentropic flow explicit solution.
下载PDF
Comparison between FLO-2D and Debris-2D on the Application of Assessment of Granular Debris Flow Hazards with Case Study 被引量:24
12
作者 WU Ying-Hsin LIU Ko-Fei CHEN Yi-Chin 《Journal of Mountain Science》 SCIE CSCD 2013年第2期293-304,共12页
Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs ... Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs are applied to the same engineering tasks, they are different in many aspects. These two programs were compared according to their fundamental theories, input and output data, computational algorithms and results. Using both programs, the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison. The simulation results show that Debris- 2D gives better assessment in hazard area delineating and flow depth predicting. Therefore, Debris-2D is better for simulation of granular debris flows. 展开更多
关键词 debris flow assessment Programcomparison FL0-2d debris-2d
下载PDF
Secondary steady-state and time-periodic flows from a basic flow with square array of odd number of vortices
13
作者 Zhimin CHEN W.G.PRICE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期447-458,共12页
In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and l... In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations. 展开更多
关键词 two-dimensional(2d)Navier-Stokes equation non-parallel square vortex flow primary bifurcation secondary steady-state flow secondary time-periodic flow
下载PDF
Field-effect transistors based on two-dimensional materials for logic applications 被引量:3
14
作者 王欣然 施毅 张荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期147-161,共15页
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi... Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors. 展开更多
关键词 graphene MOS2 two-dimensional (2d) materials field-effect transistors
下载PDF
Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium 被引量:4
15
作者 Tuoya SUN Junhong GUO E.PAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1077-1094,共18页
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction be... A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire. 展开更多
关键词 two-dimensional(2d)quasicrystal(QC) NANOPLATE VIBRATION BUCKLING elastic medium exact solution
下载PDF
Thermal transport in semiconductor nanostructures, graphene,and related two-dimensional materials 被引量:2
16
作者 Alexandr I.Cocemasov Calina I.Isacova Denis L.Nika 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期74-82,共9页
We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride,... We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride, molybdenum disulfide, and black phosphorus. Different possibilities of phonon engineering for optimization of electrical and heat conductions are discussed. The role of the phonon energy spectra modification on the thermal conductivity in semiconductor nanostructures is revealed. The dependence of thermal conductivity in graphene and related two-dimensional(2 D) materials on temperature, flake size, defect concentration, edge roughness, and strain is analyzed. 展开更多
关键词 PHONONS thermal conductivity NANOWIRE GRAPHENE two-dimensional (2d) materials
下载PDF
Debris flow simulation 2D(DFS 2D):Numerical modelling of debris flows and calibration of friction parameters 被引量:1
17
作者 Minu Treesa Abraham Neelima Satyam +1 位作者 Biswajeet Pradhan Hongling Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1747-1760,共14页
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem... Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows. 展开更多
关键词 debris flows Numerical model RHEOLOGY debris flow simulation 2d(dFS 2d)
下载PDF
Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials 被引量:1
18
作者 Yu-Jia Sun Si-Min Pang Jun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期1-11,共11页
Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful charact... Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets,including magnon and spin–lattice interaction,which are hardly accessible by other optical methods.In this paper,the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed,including the magnetic transition,spin-wave,spin–lattice interaction,symmetry tuning induced by spin ordering,and nonreciprocal magneto-phonon Raman scattering. 展开更多
关键词 two-dimensional(2d)magnets Raman spectroscopy MAGNON spin-lattice interaction
下载PDF
Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure 被引量:2
19
作者 Minghao ZHAO Cuiying FAN +1 位作者 C.S.LU Huayang DANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第11期1633-1648,共16页
The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained base... The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture. 展开更多
关键词 two-dimensional(2d)decagonal quasi-crystal(QC)coating interface crack analogy method displacement discontinuity stress intensity factor(SIF) energy release rate(ERR)
下载PDF
Room temperature synthesis of two-dimensional multi layer magnets based on α-Co^(Ⅱ) layered hydroxides 被引量:1
20
作者 Victor Oestreicher Christian Dolle +2 位作者 Diego Hunt Michael Fickert Gonzalo Abellan 《Nano Materials Science》 EI CAS CSCD 2022年第1期36-43,共8页
Research on two-dimensional(2D) materials is one of the most active fields in materials science and nanotechnology. Among the members of the 2D family, layered hydroxides(LHs) represent an exceptional case of study du... Research on two-dimensional(2D) materials is one of the most active fields in materials science and nanotechnology. Among the members of the 2D family, layered hydroxides(LHs) represent an exceptional case of study due to their unparalleled chemical versatility which allows the modulation of their physicochemical properties at will. Nowadays, LHs based on earth-abundant metals are key materials in the areas of energy storage and conversion, hybrid materials or magnetism. α-Co hydroxides(Simonkolleite-like structures) are promising phases with tuneable electronic and magnetic properties by ligand modification. However, even in the simple case of α-Co^(Ⅱ) hydroxychlorides, the preparation of well-defined large 2D crystals is not straightforward, hindering the development of fundamental studies. Herein, we present the synthesis of 2D hexagonal crystals with outstanding sizethickness relationship(diameter > 5 μm and thickness of 20 ± 7 nm) by a simple homogeneous synthesis taking place at room temperature. In structural terms, no differences are observed between our layered materials and those obtained hydrothermally. However, dynamic susceptibility measurements alert about different arrangements of the magnetic sublattices, which have been rationalized with structural DFT calculations. This work provides an extremely easy bottom-up method to obtain high-quality 2D crystals based on α-CoIIhydroxides,paving the way for the development of fundamental studies and applications. 展开更多
关键词 two-dimensional(2d)materials Layered hydroxides Hexagonal morphology Bottom-up synthesis MAGNETISM
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部