The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to ach...The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).展开更多
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i...The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.展开更多
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of the...Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.展开更多
This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeit...This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.展开更多
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The propose...A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.展开更多
A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independentl...A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.展开更多
传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数...传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数。然后,对噪声方差和信号功率进行二次估计,进而使用离网求根稀疏贝叶斯学习(off-grid root sparse Bayesian learning,OGRSBL)技术来实现入射角的精确估计。仿真表明,相比传统稀疏贝叶斯学习类算法,所提算法计算效率高,同时对紧邻信号有着更好的估计能力。展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criter...In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
基金supported in part by the National Science Fund for Excel-lent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).
基金funded by Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
基金supported in part by the National Natural Science Foundation of China(62201447)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-640)。
文摘Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.
文摘This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
文摘A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.
文摘A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
基金support of the Science and Technology Commission of Chongqing through the Nature Science Fund (2013jj B40005)supported by the Fundamental Research Funds for the Central University (106112016CDJZR165508) of China
文摘In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.