Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a...To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.展开更多
Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculatio...Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.展开更多
D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated si...D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.展开更多
The automatic diagnostic analysis on atmospheric horizontal inversion area is realized through changing the single atmospheric inversion into horizontal one based on the sounding data in Micaps system;the basic concep...The automatic diagnostic analysis on atmospheric horizontal inversion area is realized through changing the single atmospheric inversion into horizontal one based on the sounding data in Micaps system;the basic conceptual model INCLUDING atmospheric horizontal inversion area,ground 0 ℃ line,high altitude wet area,extreme point 0 ℃ line in inversion layer is buillt after the research on relationship between atmospheric horizontal inversion area and freezing rain falling area;automatic diagnostic analysis on freezing rain falling area is developed based on the conceptual model,the method is in accord well with the actual situation (freezing rain disaster weather occurred in most part of the south in beginning of 2008) and fitting rate reaches 94.4%,quantitative correlation coefficient between the area of freezing rain falling area and stations reporting freezing rain is 0.839.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
The induced polarization relaxation time spectrum(RTS) reflects the distribution of rock pore size,which is a key factor in estimating the oil or water storage capacity of strata.However,as the data acquisition and ...The induced polarization relaxation time spectrum(RTS) reflects the distribution of rock pore size,which is a key factor in estimating the oil or water storage capacity of strata.However,as the data acquisition and transmission abilities of well logging instruments are much limited due to the underground environment,it is necessary to explore suitable sampling methods which can be used to obtain an accurate RST with less sampling data.This paper presents a uniform amplitude sampling method(UASM),and compares it with the conventional uniform time sampling method(UTSM) and logarithm time sampling method(LTSM) in terms of the adaptability to different strata,RTS inversion accuracy,and stratum vertical resolution.Numerical simulation results show that the UASM can obtain high inversion accuracy of RTS with different kinds of pore size distribution formation,with high dynamic ranges of pore size,and with a small number of sampling points.The UASM,being able to adapt to the attenuation speed of polarization curve automatically,thus has the highest vertical resolution.The inversion results of rock samples also show that the UASM is superior to the UTSM and LTSM.展开更多
This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and va...This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and variables separation. The effects of the ratio of storativities to , interporosity flow parameter on the pressure behaviors for a vertically fractured well with infinite conductivity are investigated by using the method of numerical inversion. The new log-log diagnosis graph of the pressures is given and analysed.展开更多
Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. H...Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. However, there was a tradeoff between resolution and penetration. Chirp excitations partially solved the tradeoff, but the chirp setting parameters were not optimized. The present work proposes for the first time combining chirp inversion with ultrasound contrast imaging, with the motivation to improve the contrast, by automatically optimizing the setting parameters of chirp excitation, it is thus an optimal command problem. Linear chirps, 5 μm diameter microbubbles and gradient ascent algorithm were simulated to optimize the chirp setting parameters. Simulations exhibited a gain of 5 dB by automatic optimization of chirp inversion relative to pulse inversion. The automatic optimization process was quite fast. Combining chirp inversion with ultrasound contrast imaging led to a maximum backscattered power permitting high contrast outcomes and optimum parameters.展开更多
During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their ...During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.展开更多
Since the isolation of graphene,two-dimensional(2D)materials have attracted increasing interest because of their excellent chemical and physical properties,as well as promising applications.Nonetheless,particular chal...Since the isolation of graphene,two-dimensional(2D)materials have attracted increasing interest because of their excellent chemical and physical properties,as well as promising applications.Nonetheless,particular challenges persist in their further development,particularly in the effective identification of diverse 2D materials,the domains of large-scale and highprecision characterization,also intelligent function prediction and design.These issues are mainly solved by computational techniques,such as density function theory and molecular dynamic simulation,which require powerful computational resources and high time consumption.The booming deep learning methods in recent years offer innovative insights and tools to address these challenges.This review comprehensively outlines the current progress of deep learning within the realm of 2D materials.Firstly,we will briefly introduce the basic concepts of deep learning and commonly used architectures,including convolutional neural and generative adversarial networks,as well as U-net models.Then,the characterization of 2D materials by deep learning methods will be discussed,including defects and materials identification,as well as automatic thickness characterization.Thirdly,the research progress for predicting the unique properties of 2D materials,involving electronic,mechanical,and thermodynamic features,will be evaluated succinctly.Lately,the current works on the inverse design of functional 2D materials will be presented.At last,we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials.This review may offer some guidance to boost the understanding and employing novel 2D materials.展开更多
Automatic scaling ionogram can get the parameters of ionogram which are vital to ionosphere detecting. In this paper, a new method is proposed to scale F2 layer trace automatically from oblique ionogram based on morph...Automatic scaling ionogram can get the parameters of ionogram which are vital to ionosphere detecting. In this paper, a new method is proposed to scale F2 layer trace automatically from oblique ionogram based on morphological operator and inversion technique. This method is verified through the comparison of actual detecting data with statistical analysis. The results show that the proposed automatic scaling method has high acceptable rate and is suitable for scaling oblique ionogram with different high angle wave states. It is fast and precise to fit O-mode echoes in F2 layer without the influence from F1 layer. This method could be applied in real-time ionospheric oblique sounding research with high reliability and versatility.展开更多
To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance comman...To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金The National Natural Science Foundation of China(No.51175267)the Natural Science Foundation of Jiangsu Province(No.BK2010481)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20113219120004)China Postdoctoral Science Foundation(No.20100481148)the Postdoctoral Science Foundation of Jiangsu Province(No.1001004B)
文摘To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.
基金supported by National Natural Science Foundation of China (grant 41674080)Higher School Doctor Subject Special Scientific Research Foundation (grant 20110162120064)
文摘Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.
基金sponsored by the National Natural Science Foundation of China(Nos.42174149,41774144)the National Major Projects(No.2016ZX05014-001).
文摘D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.
文摘The automatic diagnostic analysis on atmospheric horizontal inversion area is realized through changing the single atmospheric inversion into horizontal one based on the sounding data in Micaps system;the basic conceptual model INCLUDING atmospheric horizontal inversion area,ground 0 ℃ line,high altitude wet area,extreme point 0 ℃ line in inversion layer is buillt after the research on relationship between atmospheric horizontal inversion area and freezing rain falling area;automatic diagnostic analysis on freezing rain falling area is developed based on the conceptual model,the method is in accord well with the actual situation (freezing rain disaster weather occurred in most part of the south in beginning of 2008) and fitting rate reaches 94.4%,quantitative correlation coefficient between the area of freezing rain falling area and stations reporting freezing rain is 0.839.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金partially supported by a project from the National Natural Science Foundation of China (No.61401168)
文摘The induced polarization relaxation time spectrum(RTS) reflects the distribution of rock pore size,which is a key factor in estimating the oil or water storage capacity of strata.However,as the data acquisition and transmission abilities of well logging instruments are much limited due to the underground environment,it is necessary to explore suitable sampling methods which can be used to obtain an accurate RST with less sampling data.This paper presents a uniform amplitude sampling method(UASM),and compares it with the conventional uniform time sampling method(UTSM) and logarithm time sampling method(LTSM) in terms of the adaptability to different strata,RTS inversion accuracy,and stratum vertical resolution.Numerical simulation results show that the UASM can obtain high inversion accuracy of RTS with different kinds of pore size distribution formation,with high dynamic ranges of pore size,and with a small number of sampling points.The UASM,being able to adapt to the attenuation speed of polarization curve automatically,thus has the highest vertical resolution.The inversion results of rock samples also show that the UASM is superior to the UTSM and LTSM.
文摘This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and variables separation. The effects of the ratio of storativities to , interporosity flow parameter on the pressure behaviors for a vertically fractured well with infinite conductivity are investigated by using the method of numerical inversion. The new log-log diagnosis graph of the pressures is given and analysed.
文摘Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. However, there was a tradeoff between resolution and penetration. Chirp excitations partially solved the tradeoff, but the chirp setting parameters were not optimized. The present work proposes for the first time combining chirp inversion with ultrasound contrast imaging, with the motivation to improve the contrast, by automatically optimizing the setting parameters of chirp excitation, it is thus an optimal command problem. Linear chirps, 5 μm diameter microbubbles and gradient ascent algorithm were simulated to optimize the chirp setting parameters. Simulations exhibited a gain of 5 dB by automatic optimization of chirp inversion relative to pulse inversion. The automatic optimization process was quite fast. Combining chirp inversion with ultrasound contrast imaging led to a maximum backscattered power permitting high contrast outcomes and optimum parameters.
基金support from the National Key R&D Program of China(No.2021YFA1501101)the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme(No.N_PolyU502/21)+3 种基金the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University(Project Code:1-ZE2V)the Shenzhen Fundamental Research Scheme-General Program(No.JCYJ20220531090807017)the Natural Science Foundation of Guangdong Province(No.2023A1515012219)the Departmental General Research Fund(Project Code:ZVUL)from The Hong Kong Polytechnic University.
文摘During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.
基金support from the National Key Research and Development Program of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Nos.U22A2091,62222509,62127817,62075120,62075122,62205187,62105193,and 6191101445)+3 种基金Shanxi Province Science and Technology Innovation Talent Team(No.202204051001014)the Science and Technology Cooperation Project of Shanxi Province(No.202104041101021)the Key Research and Development Project of Shanxi Province(No.202102030201007)111 Projects(Grant No.D18001).
文摘Since the isolation of graphene,two-dimensional(2D)materials have attracted increasing interest because of their excellent chemical and physical properties,as well as promising applications.Nonetheless,particular challenges persist in their further development,particularly in the effective identification of diverse 2D materials,the domains of large-scale and highprecision characterization,also intelligent function prediction and design.These issues are mainly solved by computational techniques,such as density function theory and molecular dynamic simulation,which require powerful computational resources and high time consumption.The booming deep learning methods in recent years offer innovative insights and tools to address these challenges.This review comprehensively outlines the current progress of deep learning within the realm of 2D materials.Firstly,we will briefly introduce the basic concepts of deep learning and commonly used architectures,including convolutional neural and generative adversarial networks,as well as U-net models.Then,the characterization of 2D materials by deep learning methods will be discussed,including defects and materials identification,as well as automatic thickness characterization.Thirdly,the research progress for predicting the unique properties of 2D materials,involving electronic,mechanical,and thermodynamic features,will be evaluated succinctly.Lately,the current works on the inverse design of functional 2D materials will be presented.At last,we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials.This review may offer some guidance to boost the understanding and employing novel 2D materials.
基金Supported by the National Natural Science Foundation of China(59975035,41006058)the Fundamental Research Funds for the Central Universities(2014212020205)
文摘Automatic scaling ionogram can get the parameters of ionogram which are vital to ionosphere detecting. In this paper, a new method is proposed to scale F2 layer trace automatically from oblique ionogram based on morphological operator and inversion technique. This method is verified through the comparison of actual detecting data with statistical analysis. The results show that the proposed automatic scaling method has high acceptable rate and is suitable for scaling oblique ionogram with different high angle wave states. It is fast and precise to fit O-mode echoes in F2 layer without the influence from F1 layer. This method could be applied in real-time ionospheric oblique sounding research with high reliability and versatility.
文摘To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.