Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors ha...Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.展开更多
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration ...In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.展开更多
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi...A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.展开更多
A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including...A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.展开更多
Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comp...Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing.展开更多
The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in whi...The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in which the secondary phase separation takes place. The results of the 2D TRLS provided more detailed information that was not readily observed in the 1D TRLS patterns. (i) During the first process of phase separation, the sequential order of coarsening in size of the domains among the larger and smaller ones has been reversed between the diffusion regime and the hydrodynamic regime. (ii) The change of the larger domains in size, due to the hydrodynamic flow in the late stage of the first phase separation process, keeps on taking place earlier than that of the new domains appeared in the secondary phase separation process. (iii) During the secondary phase separation process the size growth of the smaller domains takes place earlier than that of the larger ones, probably due to the assumption that the coarsening mode could decrease the interface tension more quickly.展开更多
Transition-metal oxyhalides MOX(M=Fe,Cr,V;O=oxygen,X=F,Cl,Br,I),an emerging type of two-dimensional(2D)van der Waals materials,have been both theoretically and experimentally demonstrated to possess unique electronic ...Transition-metal oxyhalides MOX(M=Fe,Cr,V;O=oxygen,X=F,Cl,Br,I),an emerging type of two-dimensional(2D)van der Waals materials,have been both theoretically and experimentally demonstrated to possess unique electronic and magnetic properties.However,the intrinsic in-plane anisotropic properties of 2D VOCl still lacks in-depth re-search,especially optical anisotropy.Herein,a systematic Raman spectroscopic study is performed on VOCl single-crystal with different incident laser polarization at various temperatures.The polarized-dependent Raman scattering spectra reveal that the Ag mode of VOCl show a 2-lobed shape in parallel polarization configuration while a 4-lobed shape in vertical configuration.In addition,the temperature-dependent and thickness-dependent Raman scattering spectra confirm a rela-tively weak van der Waals interaction between each layers among VOCl single crystal.These findings might provide better understanding on the in-plane anisotropic phenomenon in VOCl layers,thus will accelate further application of 2D single crystals for nanoscale angle-dependent optoelectronics.展开更多
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order co...We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.展开更多
During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their ...During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.展开更多
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor...Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.展开更多
Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimens...Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.展开更多
The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy...The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy(FT-IR) and high-performance size exclusion chromatography(HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra(2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC.The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution(MWD). According to 2D-COS analysis, microbial humiclike substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence:phenolic and alcoholic C\O groups > aromatic structures containing C_C double bonds >aliphatic C\H. X-ray photoelectron spectroscopy(XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.展开更多
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations...The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.展开更多
Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena...Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena in stimuli-responsive polymeric systems. By spreading peaks along a second dimension, 2DCOS can significantly enhance spectral resolution and discern the sequence of group dynamics applicable to various external perturbation-induced spectroscopic changes, especially in infrared (IR), near-infrared (NIR) and Raman spectroscopy. On the basis of 2DCOS synchronous power spectra changing, PCMW proves to be a powerful tool to monitor complicated spectral variations and to find transition points and ranges. This article reviews the recent work of our research group in the application of 2DCOS and PCMW in thermoresponsive polymers, mainly focused on liquid crystalline polymers and lower critical solution temperature (LCST)-type polymers. Details of group motions and chain conformational changes upon temperature perturbation can thus be elucidated at the molecular level, which contribute to the understanding of their phase transition nature.展开更多
Abstract: It has been inferred and proved by the remote sensing equations under rational hypotheses in atmospheric physics that there is a linear correlation between the ground reflective brightness Wij and the total ...Abstract: It has been inferred and proved by the remote sensing equations under rational hypotheses in atmospheric physics that there is a linear correlation between the ground reflective brightness Wij and the total reflective brightness Rij received in different bands with a remote sensor. Nine models delineating the ground-space correlation between the ground spectra and the optimal bands of images of the typical gold deposits have been established based on the ground-space correlativity and field measurements of the ground spectra of the typical gold deposits in the Ailaoshan area. According to the 9 correlation models, TM images were inverted into ground-space correlation images that are related to the typical gold deposits within the area and then recognized by a computer. Research on the ground spectra and TM data in the Ailaoshan area shows that the correlation analysis of the ground spectra and TM data of gold deposits can be effectively applied to the prediction of gold deposits, location of prospecting targets, and extraction of imagery information of gold mineralization.展开更多
We find an asymptotic expression for the characteristic timescales of decorrelation processes in weakly compressible and isothermal turbulence. This result is used in the Eddy-Damped Quasi-Normal Markovian equation to...We find an asymptotic expression for the characteristic timescales of decorrelation processes in weakly compressible and isothermal turbulence. This result is used in the Eddy-Damped Quasi-Normal Markovian equation to derive the scalings of compressible energy spectra: (1) if the acoustic waves are dominant, the compressible energy spectra exhibit \(-7/3\) scaling; (2) if local eddy straining is dominant, the compressible energy spectra are scaled as \(-3\). Meanwhile, the energy spectra of incompressible components display the same scaling of \(-5/3\) as those in incompressible turbulence. The direct numerical simulations of weakly compressible turbulence are used to examine the scaling.展开更多
By using 1-methyl-2-formyl-5 -Y-substituted pyrrole (4-nitrophenyl)hydrazones as a model for nitrogen-containing heterocyclic aromatic compounds, the emission wavelength [lambda(max(em))] values df their fluorescence ...By using 1-methyl-2-formyl-5 -Y-substituted pyrrole (4-nitrophenyl)hydrazones as a model for nitrogen-containing heterocyclic aromatic compounds, the emission wavelength [lambda(max(em))] values df their fluorescence spectra have been measured. Correlation results show that the Delta E-em values are mainly affected by polar effects, but spin-delocalizatin effects also exist.展开更多
文摘Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
文摘In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.
文摘A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.
文摘A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 61622406, 61571415, 11874350, 11434010)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000)
文摘Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing.
基金supported by the National Natural Science of Foundation of China(NSFC)(Nos.20674014, 20425415,20274010,50103003,20221402)
文摘The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in which the secondary phase separation takes place. The results of the 2D TRLS provided more detailed information that was not readily observed in the 1D TRLS patterns. (i) During the first process of phase separation, the sequential order of coarsening in size of the domains among the larger and smaller ones has been reversed between the diffusion regime and the hydrodynamic regime. (ii) The change of the larger domains in size, due to the hydrodynamic flow in the late stage of the first phase separation process, keeps on taking place earlier than that of the new domains appeared in the secondary phase separation process. (iii) During the secondary phase separation process the size growth of the smaller domains takes place earlier than that of the larger ones, probably due to the assumption that the coarsening mode could decrease the interface tension more quickly.
基金Project financially supported by National Natural Science Foundation of China (Grant No. U1932201)the International Partnership Program (Grant No. 211134KYSB20190063)+3 种基金the CAS (Chinese Academy of Sciences) Collaborative Innovation Program of Hefei Science Center (Grant No. 2020HSCCIP002)the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2020-002)the Youth Innovation Promotion Association of CAS (Grant No. 2022457)the USTC Research Funds of the Double First-Class Initiative (YD2310002004)
文摘Transition-metal oxyhalides MOX(M=Fe,Cr,V;O=oxygen,X=F,Cl,Br,I),an emerging type of two-dimensional(2D)van der Waals materials,have been both theoretically and experimentally demonstrated to possess unique electronic and magnetic properties.However,the intrinsic in-plane anisotropic properties of 2D VOCl still lacks in-depth re-search,especially optical anisotropy.Herein,a systematic Raman spectroscopic study is performed on VOCl single-crystal with different incident laser polarization at various temperatures.The polarized-dependent Raman scattering spectra reveal that the Ag mode of VOCl show a 2-lobed shape in parallel polarization configuration while a 4-lobed shape in vertical configuration.In addition,the temperature-dependent and thickness-dependent Raman scattering spectra confirm a rela-tively weak van der Waals interaction between each layers among VOCl single crystal.These findings might provide better understanding on the in-plane anisotropic phenomenon in VOCl layers,thus will accelate further application of 2D single crystals for nanoscale angle-dependent optoelectronics.
基金Project supported by the Union Research Centre of Advanced Spaceflight Technology(Grant No.USCAST2013-05)the National Natural Science Foundation of China(Grant Nos.61170228,61332019,and 61471239)the High-Tech Research and Development Program of China(Grant No.2013AA122901)
文摘We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
基金support from the National Key R&D Program of China(No.2021YFA1501101)the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme(No.N_PolyU502/21)+3 种基金the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University(Project Code:1-ZE2V)the Shenzhen Fundamental Research Scheme-General Program(No.JCYJ20220531090807017)the Natural Science Foundation of Guangdong Province(No.2023A1515012219)the Departmental General Research Fund(Project Code:ZVUL)from The Hong Kong Polytechnic University.
文摘During the development of ultrathin two-dimensional(2D)materials,the appearance of ripples has been widely observed.However,the formation mechanisms and their influences are still rarely investigated,especially their contributions to the electronic structures and optical properties.To compensate for the knowledge gap,we have carried out comprehensive theoretical studies on the monolayer WSe_(2) with a series of ripple structures from 0 to 12Åin different lattice sizes.The sensitivity of the formation energy,band structures,electronic structures,and optical properties to the ripple structures have been performed systematically for the first time.The formation of ripples in Armchair and zigzag simultaneously are more energetically favorable,leading to more flexible optimizations of the optoelectronic properties.The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures.The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions.This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals,resulting in the pinning of the Fermi level.This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.
文摘Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.
基金support from the National Natural Science Foundation of China(Grant No.12274087)Shanghai Science and Technology Development Funds(Grant No.22QA1400600)+2 种基金support from the National Key R&D Program of China(Grant No.2018YFA0305600)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)Shanghai Municipal Science and Technology Commission(Grant No.2019SHZDZX01)。
文摘Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.
基金supported by the National Key Technology Support Program (No.2014BAC13B06)the National Natural Science Foundation of China (Nos.51708443,51378414)+2 种基金the National Key Research and Development Program of China (No.2016YFC0400701)the China Postdoctoral Science Foundation (No.2017M623326XB)the Program for Innovative Research Teams in Shaanxi (No.2013KCT-13)
文摘The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy(FT-IR) and high-performance size exclusion chromatography(HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra(2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC.The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution(MWD). According to 2D-COS analysis, microbial humiclike substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence:phenolic and alcoholic C\O groups > aromatic structures containing C_C double bonds >aliphatic C\H. X-ray photoelectron spectroscopy(XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.
基金the Chinese Academy of Sciences under the Innovative Project"Multi-scale modeling and simulation in complex Systems" (KJCX-SW-L08)the National Basic Research Program of China (973 Program) (2007CB814800) the National Natural Science Foundation of China (10325211, 10628206,10732090 and 10672012)
文摘The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
基金financially supported by the National Natural Science Foundation of China(Nos.21274030,51473038 and 21604024)the Natural Science Foundation of Shanghai(No.17ZR1440400)+1 种基金the Open Project of State Key Laboratory of Chemical Engineering(No.SKL-Ch E-16C02)“Chenguang Plan”
文摘Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena in stimuli-responsive polymeric systems. By spreading peaks along a second dimension, 2DCOS can significantly enhance spectral resolution and discern the sequence of group dynamics applicable to various external perturbation-induced spectroscopic changes, especially in infrared (IR), near-infrared (NIR) and Raman spectroscopy. On the basis of 2DCOS synchronous power spectra changing, PCMW proves to be a powerful tool to monitor complicated spectral variations and to find transition points and ranges. This article reviews the recent work of our research group in the application of 2DCOS and PCMW in thermoresponsive polymers, mainly focused on liquid crystalline polymers and lower critical solution temperature (LCST)-type polymers. Details of group motions and chain conformational changes upon temperature perturbation can thus be elucidated at the molecular level, which contribute to the understanding of their phase transition nature.
文摘Abstract: It has been inferred and proved by the remote sensing equations under rational hypotheses in atmospheric physics that there is a linear correlation between the ground reflective brightness Wij and the total reflective brightness Rij received in different bands with a remote sensor. Nine models delineating the ground-space correlation between the ground spectra and the optimal bands of images of the typical gold deposits have been established based on the ground-space correlativity and field measurements of the ground spectra of the typical gold deposits in the Ailaoshan area. According to the 9 correlation models, TM images were inverted into ground-space correlation images that are related to the typical gold deposits within the area and then recognized by a computer. Research on the ground spectra and TM data in the Ailaoshan area shows that the correlation analysis of the ground spectra and TM data of gold deposits can be effectively applied to the prediction of gold deposits, location of prospecting targets, and extraction of imagery information of gold mineralization.
基金supported by the National Natural Science Foundation of China (Grants 11302238, 11232011, 11572331, and 11490551)the support from the Strategic Priority Research Program (Grant XDB22040104)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences and the National Basic Research Program of China (973 Program) (Grant 2013CB834100: Nonlinear science)
文摘We find an asymptotic expression for the characteristic timescales of decorrelation processes in weakly compressible and isothermal turbulence. This result is used in the Eddy-Damped Quasi-Normal Markovian equation to derive the scalings of compressible energy spectra: (1) if the acoustic waves are dominant, the compressible energy spectra exhibit \(-7/3\) scaling; (2) if local eddy straining is dominant, the compressible energy spectra are scaled as \(-3\). Meanwhile, the energy spectra of incompressible components display the same scaling of \(-5/3\) as those in incompressible turbulence. The direct numerical simulations of weakly compressible turbulence are used to examine the scaling.
文摘By using 1-methyl-2-formyl-5 -Y-substituted pyrrole (4-nitrophenyl)hydrazones as a model for nitrogen-containing heterocyclic aromatic compounds, the emission wavelength [lambda(max(em))] values df their fluorescence spectra have been measured. Correlation results show that the Delta E-em values are mainly affected by polar effects, but spin-delocalizatin effects also exist.