期刊文献+
共找到128,321篇文章
< 1 2 250 >
每页显示 20 50 100
Realizations, Characterizations, and Manipulations of Two-Dimensional Electron Systems Floating above Superfluid Helium Surfaces
1
作者 魏浩然 吴蒙蒙 +4 位作者 王任飞 何明城 Hiroki Ikegami 刘阳 程智刚 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第12期133-137,共5页
Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible contro... Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible controllability in microscales are the most prominent advantages that researchers strive for. Nevertheless, it is always difficult to fulfill all in one solid-state system. Two-dimensional electron systems(2DESs) floating above the superfluid helium surfaces are thought to meet these three requirements simultaneously, ensured by the atomic smoothness of surfaces and the electric neutrality of helium. Here we report our recent work in preparing, characterizing, and manipulating 2DESs on superfluid helium. We realized a tunability of electron density over one order of magnitude and tuned their transport properties by varying electron distribution and measurement frequency. The work we engage in is crucial for advancing research in many-body physics and for development of single-electron quantum devices rooted in these electron systems. 展开更多
关键词 electron SMOOTHNESS dimensions
下载PDF
Effective Qubit Emerging from the Nanoheterointerface Two-Dimensional Electron Gas Photodynamics
2
作者 Emmanuel A. Anagnostakis 《Journal of Modern Physics》 2024年第11期1615-1620,共6页
An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employe... An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering. 展开更多
关键词 Semiconductor Nanoheterointerface two-dimensional electron Gas Nanosystem Photodynamics Sign Qubit Quantum Information Registering
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
3
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
下载PDF
Influence of Al Composition on Transport Properties of Two-Dimensional Electron Gas in Al_xGa_(1-x)N/GaN Heterostructures
4
作者 唐宁 沈波 +7 位作者 王茂俊 杨志坚 徐科 张国义 桂永胜 朱博 郭少令 褚君浩 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第2期235-238,共4页
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig... Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility. 展开更多
关键词 Alx Ga1-x N/GaN heterostructure two-dimensional electron gas transport property
下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer 被引量:1
5
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 Perovskite solar cells two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
下载PDF
Electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates 被引量:2
6
作者 Qiqi Wei Hailong Wang +1 位作者 Xupeng Zhao Jianhua Zhao 《Journal of Semiconductors》 EI CAS CSCD 2022年第7期55-60,共6页
The electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases with different surface morphology has been investigated.Large electron mobility anisotropy is found for the sample with anisotropic mor... The electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases with different surface morphology has been investigated.Large electron mobility anisotropy is found for the sample with anisotropic morphology,which is mainly induced by the threading dislocations in the InAs layer.For the samples with isotropic morphology,the electron mobility is also anisotropic and could be attributed to the piezoelectric scattering.At low temperature (below transition temperature),the piezoelectric scattering is enhanced with the increase of temperature,leading to the increase of electron mobility anisotropy.At high temperature (above transition temperature),the phonon scattering becomes dominant.Because the phonon scattering is isotropic,the electron mobility anisotropy in all the samples would be reduced.Our results provide useful information for the comprehensive understanding of electron mobility anisotropy in the (Al,Ga)Sb/InAs system. 展开更多
关键词 molecular-beam epitaxy (Al Ga)Sb/InAs two-dimensional electron gases electron mobility anisotropy piezoelectric scattering
下载PDF
Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector 被引量:2
7
作者 Jin-Lun Li Shao-Hui Cui +5 位作者 Jian-Xing Xu Xiao-Ran Cui Chun-Yan Guo Ben Ma Hai-Qiao Ni Zhi-Chuan Niu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期363-368,共6页
The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are chang... The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors. 展开更多
关键词 THz detector high electron mobility transistor two-dimensional electron gas INP
下载PDF
Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation 被引量:2
8
作者 Jin-Jin Tang Gui-Peng Liu +2 位作者 Jia-Yu Song Gui-Juan Zhao Jian-Hong Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期467-471,共5页
Gallium nitride(Ga N)-based high electron mobility transistors(HEMTs)that work in aerospace are exposed to particles radiation,which can cause the degradation in electrical performance.We investigate the effect of pro... Gallium nitride(Ga N)-based high electron mobility transistors(HEMTs)that work in aerospace are exposed to particles radiation,which can cause the degradation in electrical performance.We investigate the effect of proton irradiation on the concentration of two-dimensional electron gas(2 DEG)in Ga N-based HEMTs.Coupled Schr¨odinger’s and Poisson’s equations are solved to calculate the band structure and the concentration of 2 DEG by the self-consistency method,in which the vacancies caused by proton irradiation are taken into account.Proton irradiation simulation for Ga N-based HEMT is carried out using the stopping and range of ions in matter(SRIM)simulation software,after which a theoretical model is established to analyze how proton irradiation affects the concentration of 2 DEG.Irradiated by protons with high fluence and low energy,a large number of Ga vacancies appear inside the device.The results indicate that the ionized Ga vacancies in the Ga N cap layer and the Al Ga N layer will affect the Fermi level,while the Ga vacancies in the Ga N layer will trap the two-dimensional electrons in the potential well.Proton irradiation significantly reduced the concentration of 2 DEG by the combined effect of these two mechanisms. 展开更多
关键词 proton irradiation GaN-based HEMT two-dimensional electron concentration
下载PDF
Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression 被引量:1
9
作者 何晓光 赵德刚 江德生 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期516-520,共5页
Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. T... Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. The detailed derivation process of the expression of 2DEG sheet density is given. A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail. 展开更多
关键词 high electron mobility transistors GAN two-dimensional electron gas polarization effect
下载PDF
High-mobility two-dimensional electron gases at oxide interfaces:Origin and opportunities 被引量:1
10
作者 陈允忠 Nini Pryds +2 位作者 孙继荣 沈保根 SФren Linderoth 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期1-11,共11页
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electro... Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2·V-1·s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides. 展开更多
关键词 oxide interfaces two-dimensional electron gas (2DEG) SRTIO3 oxygen vacancies
下载PDF
The low-temperature mobility of two-dimensional electron gas in AlGaN/GaN heterostructures 被引量:1
11
作者 张金风 毛维 +1 位作者 张进城 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2689-2695,共7页
To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al c... To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer. 展开更多
关键词 two-dimensional electron gas MOBILITY AlGaN/GaN heterostructures interface roughness
下载PDF
Influence of a two-dimensional electron gas on current-voltage characteristics of Al_(0.3)Ga_(0.7) N/GaN high electron mobility transistors 被引量:1
12
作者 冀东 刘冰 +2 位作者 吕燕伍 邹杪 范博龄 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期443-447,共5页
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional el... The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V. 展开更多
关键词 two-dimensional electron gas high electron mobility transistor HETEROINTERFACE nitridesemiconductor
下载PDF
Electronic,Elastic and Piezoelectric Properties of Two-Dimensional Group-Ⅳ Buckled Monolayers 被引量:1
13
作者 石鲸 高勇 +1 位作者 王晓莉 云斯宁 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期129-132,共4页
Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe ... Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers. 展开更多
关键词 PBE Buckled Monolayers electronic Elastic and Piezoelectric Properties of two-dimensional Group IV
下载PDF
Two-dimensional Boron Nitride for Electronics and Energy Applications 被引量:2
14
作者 Jiemin Wang Liangzhu Zhang +2 位作者 Lifeng Wang Weiwei Lei Zhong-Shuai Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期10-44,共35页
Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal ... Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications. 展开更多
关键词 boron nitride electronICS ENERGY FUNCTIONALIZATION NANOSHEETS two-dimensional materials
下载PDF
Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications 被引量:1
15
作者 Zhuo Xu Ming Chen Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期106-113,共8页
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi... Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction. 展开更多
关键词 two-dimensional perovskites Pseudohalides Density functional theory electronic and excitonic properties
下载PDF
Molecular design towards two-dimensional electron acceptors for efficient non-fullerene solar cells 被引量:1
16
作者 Yan Liu Zixian Liu +5 位作者 Zhicheng Hu Yuanying Liang Zhenfeng Wang Zhongxin Chen Fei Huang Yong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期190-198,共9页
Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular elec... Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells. 展开更多
关键词 two-dimensional molecules Perylene diimide electron acceptors Molecular design Non-fullerene solar cells
下载PDF
Twist-angle two-dimensional superlattices and their application in(opto)electronics 被引量:1
17
作者 Kaiyao Xin Xingang Wang +1 位作者 Kasper Grove-Rasmussen Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2022年第1期18-36,共19页
Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and t... Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and tunable properties due to the formation of Moirésuperlattice and modulated Moirébands.The review presents a brief venation on the development of"twistronics"and subsequent applications based on band engineering by twisting.Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree,twistangle,to adjust(opto)electrical behaviors.Then,the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases,respectively,leading to applications in photodetectors and superconductor electronic devices.At the same time,the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification.Finally,recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices.Hence,both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation(opto)electronics. 展开更多
关键词 twist angle Moirésuperlattice two-dimensional (opto)electronics
下载PDF
High-throughput computational material screening of the cycloalkane-based two-dimensional Dion–Jacobson halide perovskites for optoelectronics 被引量:1
18
作者 Guoqi Zhao Jiahao Xie +5 位作者 Kun Zhou Bangyu Xing Xinjiang Wang Fuyu Tian Xin He Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期52-59,共8页
Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been ... Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications. 展开更多
关键词 first-principle calculations two-dimensional halide perovskites electronic structures Dion–Jacobson phaseperovskites optoelectronic applications
下载PDF
Progress on two-dimensional ferrovalley materials
19
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
下载PDF
Two-Dimensional Metal-Halide Perovskite-based Optoelectronics: Synthesis, Structure, Properties and Applications 被引量:3
20
作者 Hongda Li Tianyuan Luo +4 位作者 Shoufeng Zhang Zijun Sun Xiong He Wenfeng Zhang Haixin Chang 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期46-64,共19页
In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D... In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented. 展开更多
关键词 applications metal-halide perovskites OPTOelectronICS two-dimensional
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部