Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors ha...Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.展开更多
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
Amyloid β(Aβ)1-42 fibrillation is a crucial step in the development of pathological hallmarks, such as neuritic plaques and neurofibrillary tangles, of Alzheimer’s disease (AD). In this study, we evaluated the effe...Amyloid β(Aβ)1-42 fibrillation is a crucial step in the development of pathological hallmarks, such as neuritic plaques and neurofibrillary tangles, of Alzheimer’s disease (AD). In this study, we evaluated the effects of free docosahexaenoic acid (DHA), an essential brain polyunsaturated fatty acid (PUFA), on the inhibition of Aβ1-42 fibrillation by fluorescence correlation spectroscopy (FCS), a technique capable of detecting molecular movements and interactions in solution. We also examined whether free arachidonic acid (AA), eicosapentaenoic acid (EPA), and metabolites of DHA, including neuroprotectin D1 (NPD1, 10S, 17S-dihydroxy-DHA), resolvin D1 (RvD1, 7S, 8R, 17S-trihydroxy-DHA), and didocosahexaenoyl glycerol (diDHA), affect Aβ1-42 polymerization. The results of the FCS study reveal that DHA and AA significantly reduced the diffusion time of TAMRA (5-carboxytetramethylrhoda-mine)-Aβ1-42 by 28% and 31%, respectively, while EPA, NPD1, RvD1, and diDHA had no effects on diffusion time. These results indicate that DHA and AA inhibited Aβ1-42 polymerization and that their inhibitory effects occurred at the initial stage of Aβ1-42 polymerization. This study will advance the research on PUFAs in preventing AD progression.展开更多
A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successf...A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.展开更多
A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including...A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.展开更多
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi...A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.展开更多
Fluorescence correlation spectroscopy (FCS) without objective image magnification (without using con-focal microscope) was applied to observe the variation in cell size of Escherichia coli (E. coli) induced by t...Fluorescence correlation spectroscopy (FCS) without objective image magnification (without using con-focal microscope) was applied to observe the variation in cell size of Escherichia coli (E. coli) induced by the anti-cancer agent MitomycinC (MMC). In the system without image magnification followed in this study, the suspension of E. coli cells was stirred, and the difference in movement due to the different cell sizes induced by the compulsive solution flow was detected. The addition of 0.1-0.4 pg/L of MMC elongated the E. coli cell length from about 3.6 to 7.8μm. The flow cell (i.d. = about 1 mm) also produced a size-dependent correlation curve, The present system is not based on single molecular FCS but is inexpensive and effective at observing the variation in cell size induced by environmental changes.展开更多
The laser-induced fluorescence excitation spectra of uranium monofluoride have been recorded in the range of17000-19000 cm^(-1) using twodimensional spectroscopy.High resolution dispersed fluorescence spectra and time...The laser-induced fluorescence excitation spectra of uranium monofluoride have been recorded in the range of17000-19000 cm^(-1) using twodimensional spectroscopy.High resolution dispersed fluorescence spectra and time-resolved fluorescence spectroscopy were also recorded.Three rotationally resolved bands were intensively analyzed,and all bands were found to be derived from the ground state X(1)4.5 with a rotational constant of 0.23421 cm^(-1).The low-lying electronic states were observed near 435 and 651 cm^(-1) in the dispersed fluorescence spectra,which were assigned as?′=3.5 and 2.5,respectively.The vibrational constants for the X(1)4.5 and X(1)3.5 states were calculated.The branching ratios of the dispersed fluorescence spectra for the[18.62]3.5,[17.72]4.5,and[17.65]4.5 states were reported.Radiative lifetime of332(9)ns,825(49)ns,and 433(15)ns for the[18.62]3.5,[17.72]4.5,and[17.65]4.5 states were obtained by fitting the time-resolved fluorescence spectroscopy,respectively.Transition dipole moments were performed using the branching ratios and the radiative lifetimes.展开更多
As a model molecule of actinide chemistry,UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species.We report a study of the laser-induced fluore...As a model molecule of actinide chemistry,UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species.We report a study of the laser-induced fluorescence spectra of the U^(16)O and U^(18)O using two-dimensional spectroscopy.Several rotationally resolved excitation spectra were investigated.Accurate molecular rotational constants and equilibrium internuclear distances were reported.Low-lying electronic states information was extracted from high resolution dispersed fluorescence spectra and analyzed by the ligand field theory model.The configuration of the ground state was determined as U^(2+)(5 f^(3)7 s)O^(2-).The branching ratios,and the vibrational harmonic and anharmonic parameters were also obtained.Radiative lifetimes were determined by recording the timeresolved fluorescence spectroscopy.Transition dipole moments were calculated using the branching ratios and the radiative lifetimes.These findings were elucidated by using quantum-chemical calculations,and the chemical bonding was also analyzed.The findings presented in this work will enrich our understanding of actinide-containing molecules.展开更多
Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conven- tional F...Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conven- tional FCS method has limitations in extracting autocorrelations for different species and cross correla- tions between different species. Recently developed fluorescence lifetime correlation spectroscopy (FLCS) based on time-tagged time-resolved (TITR) photon recording, which can record the global and micro arrival time for each individual photon, has been used to discriminate different species according to fluorescence lifetime. Here, based on two-dimensional lifetime decay maps constructed from TITR photon stream, we have developed a quantitative lifetime-deconvolution FCS model (LDFCS) to extract precise chemical rates for chemical conversions in multi-species systems. The key point of LDFCS model is separation of different species according to the global distribution of fluorescence lifetime and then deconvolution of autocorrelations and cross-correlations from the two-dimensional lifetime decay maps constructed bv the micro arrival times of photon pairs at each delay time.展开更多
Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the bind...Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.展开更多
Fluorescence correlation spectroscopy (FCS) is capable of probing dynamic processes in living biological systems. From photon fluctuation of fluorescing particles which diffuse through a small detection volume, FCS re...Fluorescence correlation spectroscopy (FCS) is capable of probing dynamic processes in living biological systems. From photon fluctuation of fluorescing particles which diffuse through a small detection volume, FCS reveals information on the concentration and the structure of the particles, as well as information on microscopic environment. In this note, we study the radiation forces experienced by Rayleigh particles in a laser field in details, and analyze the effects of gradient field on FCS measurements.展开更多
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c...Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.展开更多
Deciphering the dynamics of protein and lipid molecules on appropriate spatial and temporal scales may shed light on protein function and membrane organization. However, traditional bulk approaches cannot unambiguousl...Deciphering the dynamics of protein and lipid molecules on appropriate spatial and temporal scales may shed light on protein function and membrane organization. However, traditional bulk approaches cannot unambiguously quantify the extremely diverse mobility and interactions of proteins in living cells. Fluores- cence correlation spectroscopy (FCS) is a powerful technique to describe events that occur at the singlemolecule level and on the nanosecond to second timescales; therefore, FCS can provide data on the heterogeneous organization of membrane systems. FCS can also be combined with other microscopy techniques, such as super-resolution techniques. More importantly, FCS is minimally invasive, which makes it an ideal approach to detect the heterogeneous distribution and dynamics of key proteins during development. In this review, we give a brief introduction about the development of FCS and summarize the significant contributions of FCS in understanding the organization of plant cell membranes and the dy- namics and interactions of membrane proteins .We also discuss the potential applications of this technique in plant biology.展开更多
Since the theory of generalized two-dimensional (2-D) correlation spectroscopy was proposed, it has been keenly concerned in scientific research and its analytical method has been widely applied in various analytical ...Since the theory of generalized two-dimensional (2-D) correlation spectroscopy was proposed, it has been keenly concerned in scientific research and its analytical method has been widely applied in various analytical fields. The mathematical process to construct generalized 2-D correlation spectroscopy and the physical meaning of 2-D correlation spectral map are described, and three examples in the fields of chemical analysis and molecular biology are provided, such as the component analysis of organic solvent, the analysis of biological molecules in the solvent with different pH values and structural analysis of protein. The theory and analytical method of generalized 2-D correlation spectroscopy are also detailedly commented.展开更多
Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena...Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena in stimuli-responsive polymeric systems. By spreading peaks along a second dimension, 2DCOS can significantly enhance spectral resolution and discern the sequence of group dynamics applicable to various external perturbation-induced spectroscopic changes, especially in infrared (IR), near-infrared (NIR) and Raman spectroscopy. On the basis of 2DCOS synchronous power spectra changing, PCMW proves to be a powerful tool to monitor complicated spectral variations and to find transition points and ranges. This article reviews the recent work of our research group in the application of 2DCOS and PCMW in thermoresponsive polymers, mainly focused on liquid crystalline polymers and lower critical solution temperature (LCST)-type polymers. Details of group motions and chain conformational changes upon temperature perturbation can thus be elucidated at the molecular level, which contribute to the understanding of their phase transition nature.展开更多
Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The...Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.展开更多
In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagul...In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.展开更多
The advantage of fluorescence correlation spectroscopy to study single chain behavior of polyelectrolytes has been demonstrated by checking the coil-to-globule transition ofpoly 2-vinylpyridine with the change ofpH va...The advantage of fluorescence correlation spectroscopy to study single chain behavior of polyelectrolytes has been demonstrated by checking the coil-to-globule transition ofpoly 2-vinylpyridine with the change ofpH value in aqueous solution. The ultra-high sensitivity of FCS allows measurement at extreme dilution where the effect of electrostatic interaction between the chains is greatly suppressed. The results exposed first-order conformation tran- sition of P2VP as detected by FCS while inter-chain aggregation occurred in the experiments of dynamic light scat- tering.展开更多
文摘Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
文摘Amyloid β(Aβ)1-42 fibrillation is a crucial step in the development of pathological hallmarks, such as neuritic plaques and neurofibrillary tangles, of Alzheimer’s disease (AD). In this study, we evaluated the effects of free docosahexaenoic acid (DHA), an essential brain polyunsaturated fatty acid (PUFA), on the inhibition of Aβ1-42 fibrillation by fluorescence correlation spectroscopy (FCS), a technique capable of detecting molecular movements and interactions in solution. We also examined whether free arachidonic acid (AA), eicosapentaenoic acid (EPA), and metabolites of DHA, including neuroprotectin D1 (NPD1, 10S, 17S-dihydroxy-DHA), resolvin D1 (RvD1, 7S, 8R, 17S-trihydroxy-DHA), and didocosahexaenoyl glycerol (diDHA), affect Aβ1-42 polymerization. The results of the FCS study reveal that DHA and AA significantly reduced the diffusion time of TAMRA (5-carboxytetramethylrhoda-mine)-Aβ1-42 by 28% and 31%, respectively, while EPA, NPD1, RvD1, and diDHA had no effects on diffusion time. These results indicate that DHA and AA inhibited Aβ1-42 polymerization and that their inhibitory effects occurred at the initial stage of Aβ1-42 polymerization. This study will advance the research on PUFAs in preventing AD progression.
基金This work was financially supported by the National Natural Science Foundation of China. (No.20271033, 20335020, 90408014).
文摘A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.
文摘A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.
文摘A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.
文摘Fluorescence correlation spectroscopy (FCS) without objective image magnification (without using con-focal microscope) was applied to observe the variation in cell size of Escherichia coli (E. coli) induced by the anti-cancer agent MitomycinC (MMC). In the system without image magnification followed in this study, the suspension of E. coli cells was stirred, and the difference in movement due to the different cell sizes induced by the compulsive solution flow was detected. The addition of 0.1-0.4 pg/L of MMC elongated the E. coli cell length from about 3.6 to 7.8μm. The flow cell (i.d. = about 1 mm) also produced a size-dependent correlation curve, The present system is not based on single molecular FCS but is inexpensive and effective at observing the variation in cell size induced by environmental changes.
基金supported by the National Natural Science Foundation of China(No.21903050)。
文摘The laser-induced fluorescence excitation spectra of uranium monofluoride have been recorded in the range of17000-19000 cm^(-1) using twodimensional spectroscopy.High resolution dispersed fluorescence spectra and time-resolved fluorescence spectroscopy were also recorded.Three rotationally resolved bands were intensively analyzed,and all bands were found to be derived from the ground state X(1)4.5 with a rotational constant of 0.23421 cm^(-1).The low-lying electronic states were observed near 435 and 651 cm^(-1) in the dispersed fluorescence spectra,which were assigned as?′=3.5 and 2.5,respectively.The vibrational constants for the X(1)4.5 and X(1)3.5 states were calculated.The branching ratios of the dispersed fluorescence spectra for the[18.62]3.5,[17.72]4.5,and[17.65]4.5 states were reported.Radiative lifetime of332(9)ns,825(49)ns,and 433(15)ns for the[18.62]3.5,[17.72]4.5,and[17.65]4.5 states were obtained by fitting the time-resolved fluorescence spectroscopy,respectively.Transition dipole moments were performed using the branching ratios and the radiative lifetimes.
基金Project supported by the National Natural Science Foundation of China(Grant No.21903050)。
文摘As a model molecule of actinide chemistry,UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species.We report a study of the laser-induced fluorescence spectra of the U^(16)O and U^(18)O using two-dimensional spectroscopy.Several rotationally resolved excitation spectra were investigated.Accurate molecular rotational constants and equilibrium internuclear distances were reported.Low-lying electronic states information was extracted from high resolution dispersed fluorescence spectra and analyzed by the ligand field theory model.The configuration of the ground state was determined as U^(2+)(5 f^(3)7 s)O^(2-).The branching ratios,and the vibrational harmonic and anharmonic parameters were also obtained.Radiative lifetimes were determined by recording the timeresolved fluorescence spectroscopy.Transition dipole moments were calculated using the branching ratios and the radiative lifetimes.These findings were elucidated by using quantum-chemical calculations,and the chemical bonding was also analyzed.The findings presented in this work will enrich our understanding of actinide-containing molecules.
基金supported by ‘‘Strategic Priority Research Program” of Chinese Academy of Sciences (XDA09040300)Beijing Science and Technology Project (Z151100003915077)+1 种基金Beijing Nova Programme (Z151100000315081)Beijing Talents Fund (2015000021223ZK17)
文摘Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conven- tional FCS method has limitations in extracting autocorrelations for different species and cross correla- tions between different species. Recently developed fluorescence lifetime correlation spectroscopy (FLCS) based on time-tagged time-resolved (TITR) photon recording, which can record the global and micro arrival time for each individual photon, has been used to discriminate different species according to fluorescence lifetime. Here, based on two-dimensional lifetime decay maps constructed from TITR photon stream, we have developed a quantitative lifetime-deconvolution FCS model (LDFCS) to extract precise chemical rates for chemical conversions in multi-species systems. The key point of LDFCS model is separation of different species according to the global distribution of fluorescence lifetime and then deconvolution of autocorrelations and cross-correlations from the two-dimensional lifetime decay maps constructed bv the micro arrival times of photon pairs at each delay time.
基金funded by the National Natural Science Foundation of China(Nos.51479187,51209192)the China Postdoctoral Science Foundation(Nos.2014T70505+1 种基金2013M 540438)the PAPD,and the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF13011)
文摘Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.
文摘Fluorescence correlation spectroscopy (FCS) is capable of probing dynamic processes in living biological systems. From photon fluctuation of fluorescing particles which diffuse through a small detection volume, FCS reveals information on the concentration and the structure of the particles, as well as information on microscopic environment. In this note, we study the radiation forces experienced by Rayleigh particles in a laser field in details, and analyze the effects of gradient field on FCS measurements.
基金supported by the Medical Scientific Research Foundation of Guangdong Province,China(B2009043)
文摘Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.
文摘Deciphering the dynamics of protein and lipid molecules on appropriate spatial and temporal scales may shed light on protein function and membrane organization. However, traditional bulk approaches cannot unambiguously quantify the extremely diverse mobility and interactions of proteins in living cells. Fluores- cence correlation spectroscopy (FCS) is a powerful technique to describe events that occur at the singlemolecule level and on the nanosecond to second timescales; therefore, FCS can provide data on the heterogeneous organization of membrane systems. FCS can also be combined with other microscopy techniques, such as super-resolution techniques. More importantly, FCS is minimally invasive, which makes it an ideal approach to detect the heterogeneous distribution and dynamics of key proteins during development. In this review, we give a brief introduction about the development of FCS and summarize the significant contributions of FCS in understanding the organization of plant cell membranes and the dy- namics and interactions of membrane proteins .We also discuss the potential applications of this technique in plant biology.
文摘Since the theory of generalized two-dimensional (2-D) correlation spectroscopy was proposed, it has been keenly concerned in scientific research and its analytical method has been widely applied in various analytical fields. The mathematical process to construct generalized 2-D correlation spectroscopy and the physical meaning of 2-D correlation spectral map are described, and three examples in the fields of chemical analysis and molecular biology are provided, such as the component analysis of organic solvent, the analysis of biological molecules in the solvent with different pH values and structural analysis of protein. The theory and analytical method of generalized 2-D correlation spectroscopy are also detailedly commented.
基金financially supported by the National Natural Science Foundation of China(Nos.21274030,51473038 and 21604024)the Natural Science Foundation of Shanghai(No.17ZR1440400)+1 种基金the Open Project of State Key Laboratory of Chemical Engineering(No.SKL-Ch E-16C02)“Chenguang Plan”
文摘Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena in stimuli-responsive polymeric systems. By spreading peaks along a second dimension, 2DCOS can significantly enhance spectral resolution and discern the sequence of group dynamics applicable to various external perturbation-induced spectroscopic changes, especially in infrared (IR), near-infrared (NIR) and Raman spectroscopy. On the basis of 2DCOS synchronous power spectra changing, PCMW proves to be a powerful tool to monitor complicated spectral variations and to find transition points and ranges. This article reviews the recent work of our research group in the application of 2DCOS and PCMW in thermoresponsive polymers, mainly focused on liquid crystalline polymers and lower critical solution temperature (LCST)-type polymers. Details of group motions and chain conformational changes upon temperature perturbation can thus be elucidated at the molecular level, which contribute to the understanding of their phase transition nature.
文摘Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.
基金supported by the National Key Technology Support Program(No.2014BAC13B06)the National Natural Science Foundation of China(Nos.51378414,51178376)+1 种基金the Program for Innovative Research Team in Shaanxi(No.2013KCT-13)the Program for New Century Excellent Talents in the University of Ministry of Education of China(No.NCET-12-1043)
文摘In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.
文摘The advantage of fluorescence correlation spectroscopy to study single chain behavior of polyelectrolytes has been demonstrated by checking the coil-to-globule transition ofpoly 2-vinylpyridine with the change ofpH value in aqueous solution. The ultra-high sensitivity of FCS allows measurement at extreme dilution where the effect of electrostatic interaction between the chains is greatly suppressed. The results exposed first-order conformation tran- sition of P2VP as detected by FCS while inter-chain aggregation occurred in the experiments of dynamic light scat- tering.