Using first-principles calculations based on density functional theory,we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dime...Using first-principles calculations based on density functional theory,we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dimensional hole gas(2 DHG)in AlN/GaN superlattices.We show that the increase of in-plane lattice constant would increase the concentration of 2 DHG at interfaces and decrease the valence band offset,which may lead to a leak of current.Increasing the thickness of AlN and/or decreasing the thickness of GaN would remarkably strengthen the internal field in GaN layer,resulting in better confinement of 2 DHG at AlN/GaN interfaces.Therefore,a moderate larger in-plane lattice constant and thicker AlN layer could improve the concentration and confinement of 2 DHG at AlN/GaN interfaces.Our study could serve as a guide to control the properties of 2 DHG at Ⅲ-nitride interfaces and help to optimize the performance of p-type nitride-based devices.展开更多
A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-depende...A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.展开更多
An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employe...An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.展开更多
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig...Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.展开更多
The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are chang...The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.展开更多
Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. T...Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. The detailed derivation process of the expression of 2DEG sheet density is given. A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail.展开更多
To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al c...To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.展开更多
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional el...The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.展开更多
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electro...Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2·V-1·s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides.展开更多
Two-dimensional electron gases(2 DEGs)formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena.While most of the previous works focused on SrTiO_(3-)b...Two-dimensional electron gases(2 DEGs)formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena.While most of the previous works focused on SrTiO_(3-)based 2 DEGs,here we took the amorphous-ABO_(3)/KTaO_(3)system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film.The criterion of oxide-oxide interface redox reactions for the B-site metals,Zr,Al,Ti,Ta,and Nb in conductive interfaces was revealed:the formation heat of metal oxide,ⅢH_(f)^(o),is lower than-350 kJ/(mol O)and the work function of the metalΦis in the range of 3.75 eV<Φ<4.4 eV.Furthermore,we found that the smaller absolute value ofⅢH_(f)^(o)and the larger value ofΦof the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO_(3)/KTaO_(3)interface.This finding paves the way for the design of high-mobility all-oxide electronic devices.展开更多
We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the...We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.展开更多
This paper finds that the two-dimensional electron gas density in high Al-content A1GaN/GaN heterostructures exhibits an obvious time-dependent degradation after the epitaxial growth. The degradation mechanism was inv...This paper finds that the two-dimensional electron gas density in high Al-content A1GaN/GaN heterostructures exhibits an obvious time-dependent degradation after the epitaxial growth. The degradation mechanism was investigated in depth using Hall effect measurements,high resolution x-ray diffraction,scanning electron microscopy,x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy.The results reveal that the formation of surface oxide is the main reason for the degradation,and the surface oxidation always occurs within the surface hexagonal defects for high Al-content AlGaN/GaN heterostructures.展开更多
Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. Whil...Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. While the carrier concentration reaches 1.32×10^13 cm^-2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 10^4 cm2/(V.s) at 2 K. The Shubnikov-de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEC is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.展开更多
A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepar...A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the 1ī0 direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin–orbit coupling,and the spin relaxation mechanism along both directions belongs to D'yakonov–Perel'(DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the 1ī0 direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions.展开更多
A thermodynamic density of states, electron density in the subband and the entropy of the gas as function of the temperature and the total two-dimensional electron density are studied. Semiconductor conduction band di...A thermodynamic density of states, electron density in the subband and the entropy of the gas as function of the temperature and the total two-dimensional electron density are studied. Semiconductor conduction band dispersion is described by the simplified Kane model. Numerical simulation shows that with an increase in the total electron concentration, thermodynamic density of states at low temperatures changes abruptly and smoothes jumps at high temperatures. This change manifests itself in the peculiar thermodynamic characteristics. The results are used to interpret existing experimental data.展开更多
Nickel-based catalysts represent the most commonly used systems for CO methanation.We have successfully prepared a Ni catalyst system supported on two-dimensional plasma-treated vermiculite(2D-PVMT)with a very low N...Nickel-based catalysts represent the most commonly used systems for CO methanation.We have successfully prepared a Ni catalyst system supported on two-dimensional plasma-treated vermiculite(2D-PVMT)with a very low Ni loading(0.5 wt%).The catalyst precursor was subjected to heat treatment via either conventional heat treatment(CHT)or the plasma irradiation method(PIM).The as-obtained CHT-Ni/PVMT and PIM-Ni/PVMT catalysts were characterized with scanning electron microscopy(SEM),energy dispersive X-ray(EDX),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),inductively coupled plasma-atomic emission spectroscopy(ICP-AES)and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).Additionally,CHT-NiO/PVMT and PIM-NiO/PVMT catalysts were characterized with hydrogen temperature programmed reduction(H2-TPR).Compared with CHT-Ni/PVMT,PIM-Ni/PVMT exhibited superior catalytic performance.The plasma treated catalyst PIM-Ni/PVMT achieved a CO conversion of93.5%and a turnover frequency(TOF)of 0.8537 s^-1,at a temperature of 450℃,a gas hourly space velocity of 6000 ml·g^-1·h^-1,a synthesis gas flow rate of 65 ml·min^-1,and a pressure of 1.5 MPa.Plasma irradiation may provide a successful strategy for the preparation of catalysts with very low metal loadings which exhibit excellent properties.展开更多
The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with ...The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with a sulfur chemiluminescence detector to harvest a satisfactory result. The identification of the structure of sulfur compounds by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometry indicated that cyclo-sulfides, benzothiophenes, dibenzothiophenes, dihydro-benzothiophenes and tetrahydro-dibenzothiophenes were included in straightrun diesel obtained from the Arab medium crude(AM). A total of 259 individual compounds were detected and their molecular structures were identified. The analytical method was approved as an effective way to characterize the composition of sulfur compounds, which reduced the interference of other compounds, facilitated the data presentation and provided more detailed information about molecular composition of sulfur compounds.展开更多
Detecting holes in oil–gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangul...Detecting holes in oil–gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil–gas reservoirs by adopting terahertz time-domain spectroscopy(THz-TDS). We evaluate the THz absorption responses of punched silicon(Si) wafers having micro-holes with sizes of 20 μm–500 μm. Principal component analysis(PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil–gas reservoirs.展开更多
The first-principles calculations are employed to investigate the electrical properties of polar MgO/BaTiO3(110)interfaces. Both n-type and p-type polar interfaces show a two-dimensional metallic behavior. For the n...The first-principles calculations are employed to investigate the electrical properties of polar MgO/BaTiO3(110)interfaces. Both n-type and p-type polar interfaces show a two-dimensional metallic behavior. For the n-type polar interface,the interface Ti3d electrons are the origin of the metallic and magnetic properties. Varying the thickness of Ba TiO3 may induce an insulator–metal transition, and the critical thickness is 4 unit cells. For the p-type polar interface, holes preferentially occupy the interface O 2p y state, resulting in a conducting interface. The unbalance of the spin splitting of the O 2p states in the interface Mg O layer leads to a magnetic moment of about 0.25μB per O atom at the interface.These results further demonstrate that other polar interfaces, besides LaAlO3/SrTiO3, can show a two-dimensional metallic behavior. It is helpful to fully understand the role of polar discontinuity on the properties of the interface, which widens the field of polar-nonpolar interfaces.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 g...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged.展开更多
基金the National Key Research and Development Program of China(Grant No.2018YFB2202801)the National Natural Science Foundation of China(Grant No.12074369).
文摘Using first-principles calculations based on density functional theory,we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dimensional hole gas(2 DHG)in AlN/GaN superlattices.We show that the increase of in-plane lattice constant would increase the concentration of 2 DHG at interfaces and decrease the valence band offset,which may lead to a leak of current.Increasing the thickness of AlN and/or decreasing the thickness of GaN would remarkably strengthen the internal field in GaN layer,resulting in better confinement of 2 DHG at AlN/GaN interfaces.Therefore,a moderate larger in-plane lattice constant and thicker AlN layer could improve the concentration and confinement of 2 DHG at AlN/GaN interfaces.Our study could serve as a guide to control the properties of 2 DHG at Ⅲ-nitride interfaces and help to optimize the performance of p-type nitride-based devices.
基金supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No 07005834)
文摘A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.
文摘An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.
文摘Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
基金Project supported by the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61435012)
文摘The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61377020,61376089,61223005,and 61176126)the National Science Fund for Distinguished Young Scholars,China(Grant No.60925017)
文摘Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. The detailed derivation process of the expression of 2DEG sheet density is given. A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No 60736033)Xi’an Applied Materials Innovation Fund of China (Grant No XA-AM-200703)the Open Fund of Key Laboratory of Wide Bandgap Semiconductors Material and Devices,Ministry of Education,China
文摘To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976070)the Excellent Science and Technology Innovation Program from Beijing Jiaotong University,China
文摘The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.
文摘Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2·V-1·s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides.
基金the National Key R&D Program of China(Grant Nos.2016YFA0300701,2017YFA0206304,and 2018YFA0305704)the National Natural Science Foundation of China(Grant Nos.11934016,111921004,51972335,and 11674378)the Key Program of the Chinese Academy of Sciences(Grant Nos.XDB33030200 and QYZDY-SSW-SLH020)。
文摘Two-dimensional electron gases(2 DEGs)formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena.While most of the previous works focused on SrTiO_(3-)based 2 DEGs,here we took the amorphous-ABO_(3)/KTaO_(3)system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film.The criterion of oxide-oxide interface redox reactions for the B-site metals,Zr,Al,Ti,Ta,and Nb in conductive interfaces was revealed:the formation heat of metal oxide,ⅢH_(f)^(o),is lower than-350 kJ/(mol O)and the work function of the metalΦis in the range of 3.75 eV<Φ<4.4 eV.Furthermore,we found that the smaller absolute value ofⅢH_(f)^(o)and the larger value ofΦof the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO_(3)/KTaO_(3)interface.This finding paves the way for the design of high-mobility all-oxide electronic devices.
基金the National Natural Science Foundation of China(Grant No.11104156)the Postdoctoral Science Foundation of China(Grant No.2012M510405)+1 种基金the Independent Research and Development Fund of Tsinghua University,China(Grant No.20121087948)the Beijing Key Lab of Fine Ceramics Opening Fund,China(Grant No.2012200110)
文摘We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.
基金Project supported by the Major Program and State Key Program of National Natural Science of China (Grant Nos 60890191 and 60736033)the National Key Science & Technology Special Project (Grant No 2008ZX 01002)
文摘This paper finds that the two-dimensional electron gas density in high Al-content A1GaN/GaN heterostructures exhibits an obvious time-dependent degradation after the epitaxial growth. The degradation mechanism was investigated in depth using Hall effect measurements,high resolution x-ray diffraction,scanning electron microscopy,x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy.The results reveal that the formation of surface oxide is the main reason for the degradation,and the surface oxidation always occurs within the surface hexagonal defects for high Al-content AlGaN/GaN heterostructures.
基金Project supported by the National Basic Research Program of China (Grant No.2011CB309606)
文摘Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. While the carrier concentration reaches 1.32×10^13 cm^-2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 10^4 cm2/(V.s) at 2 K. The Shubnikov-de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEC is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.
基金Project supported by the Ministry of Science and Technology of China(Grant Nos.2013CB921701,2013CBA01603,and 2014CB920903)the National Natural Science Foundation of China(Grant Nos.10974019,51172029,91121012,11422430,11374035,11474022,and 11474024)+1 种基金the Program for New Century Excellent Talents in the University of the Ministry of Education of China(Grant No.NCET-13-0054)the Beijing Higher Education Young Elite Teacher Project,China(Grant No.YETP0238)
文摘A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the 1ī0 direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin–orbit coupling,and the spin relaxation mechanism along both directions belongs to D'yakonov–Perel'(DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the 1ī0 direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions.
文摘A thermodynamic density of states, electron density in the subband and the entropy of the gas as function of the temperature and the total two-dimensional electron density are studied. Semiconductor conduction band dispersion is described by the simplified Kane model. Numerical simulation shows that with an increase in the total electron concentration, thermodynamic density of states at low temperatures changes abruptly and smoothes jumps at high temperatures. This change manifests itself in the peculiar thermodynamic characteristics. The results are used to interpret existing experimental data.
基金Supported by the National Natural Science Foundation of China(U1203293,21163015)the Doctor Foundation of Bingtuan(2013BB010)+1 种基金Program of Science and Technology Innovation Team in Bingtuan(2015BD003)Program for Changjiang Scholars,Innovative Research Team in University(IRT_15R46)
文摘Nickel-based catalysts represent the most commonly used systems for CO methanation.We have successfully prepared a Ni catalyst system supported on two-dimensional plasma-treated vermiculite(2D-PVMT)with a very low Ni loading(0.5 wt%).The catalyst precursor was subjected to heat treatment via either conventional heat treatment(CHT)or the plasma irradiation method(PIM).The as-obtained CHT-Ni/PVMT and PIM-Ni/PVMT catalysts were characterized with scanning electron microscopy(SEM),energy dispersive X-ray(EDX),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),inductively coupled plasma-atomic emission spectroscopy(ICP-AES)and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).Additionally,CHT-NiO/PVMT and PIM-NiO/PVMT catalysts were characterized with hydrogen temperature programmed reduction(H2-TPR).Compared with CHT-Ni/PVMT,PIM-Ni/PVMT exhibited superior catalytic performance.The plasma treated catalyst PIM-Ni/PVMT achieved a CO conversion of93.5%and a turnover frequency(TOF)of 0.8537 s^-1,at a temperature of 450℃,a gas hourly space velocity of 6000 ml·g^-1·h^-1,a synthesis gas flow rate of 65 ml·min^-1,and a pressure of 1.5 MPa.Plasma irradiation may provide a successful strategy for the preparation of catalysts with very low metal loadings which exhibit excellent properties.
基金financially supported by the National Basic Research Program of China (973 Program) (2012CB224800)
文摘The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with a sulfur chemiluminescence detector to harvest a satisfactory result. The identification of the structure of sulfur compounds by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometry indicated that cyclo-sulfides, benzothiophenes, dibenzothiophenes, dihydro-benzothiophenes and tetrahydro-dibenzothiophenes were included in straightrun diesel obtained from the Arab medium crude(AM). A total of 259 individual compounds were detected and their molecular structures were identified. The analytical method was approved as an effective way to characterize the composition of sulfur compounds, which reduced the interference of other compounds, facilitated the data presentation and provided more detailed information about molecular composition of sulfur compounds.
基金supported by the National Natural Science Foundation of China(Grant No.61405259)the National Basic Research Program of China(Grant No.2014CB744302)the Specially Founded Program on National Key Scientific Instruments and Equipment Development,China(Grant No.2012YQ140005)
文摘Detecting holes in oil–gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil–gas reservoirs by adopting terahertz time-domain spectroscopy(THz-TDS). We evaluate the THz absorption responses of punched silicon(Si) wafers having micro-holes with sizes of 20 μm–500 μm. Principal component analysis(PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil–gas reservoirs.
基金supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.11374186,51231007,51202132,and 51102153)the Independent Innovation Foundation of Shandong University,China(Grant No.2012TS027)
文摘The first-principles calculations are employed to investigate the electrical properties of polar MgO/BaTiO3(110)interfaces. Both n-type and p-type polar interfaces show a two-dimensional metallic behavior. For the n-type polar interface,the interface Ti3d electrons are the origin of the metallic and magnetic properties. Varying the thickness of Ba TiO3 may induce an insulator–metal transition, and the critical thickness is 4 unit cells. For the p-type polar interface, holes preferentially occupy the interface O 2p y state, resulting in a conducting interface. The unbalance of the spin splitting of the O 2p states in the interface Mg O layer leads to a magnetic moment of about 0.25μB per O atom at the interface.These results further demonstrate that other polar interfaces, besides LaAlO3/SrTiO3, can show a two-dimensional metallic behavior. It is helpful to fully understand the role of polar discontinuity on the properties of the interface, which widens the field of polar-nonpolar interfaces.
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged.