期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental and theoretical studies on two-dimensional vanadium carbide hybrid nanomaterials derived from V_(4)AlC_(3) as excellent catalyst for MgH_(2)
1
作者 Zhiqiang Lan Huiren Liang +7 位作者 Xiaobin Wen Jiayang Hu Hua Ning Liang Zeng Haizhen Liu Jun Tan Jürgen Eckert Jin Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3790-3799,共10页
Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-di... Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-dimensional vanadium carbide(VC) was prepared by an etching method using V_(4)AlC_(3) as a precursor and then employed to enhance the hydrogen storage properties of MgH_(2).The studied results indicate that VC-doped MgH_(2) can absorb hydrogen at room temperature and release hydrogen at 170℃. Moreover,it absorbs 5.0 wt.%of H_(2) within 9.8 min at 100℃ and desorbs 5.0 wt.% of H_(2) within 3.2 min at 300℃.The dehydrogenation apparent activation energy of VC-doped MgH_(2) is 89.3 ± 2.8 kJ/mol,which is far lower than that of additive-free MgH_(2)(138.5 ± 2.4 kJ/mol),respectively.Ab-initio simulations showed that VC can stretch Mg-H bonds and make the Mg-H bonds easier to break,which is responsible for the decrease of dehydrogenation temperature and conducive to accelerating the diffusion rate of hydrogen atoms,thus,the hydrogen storage properties of MgH_(2) are remarkable improved through addition of VC. 展开更多
关键词 MgH_2 two-dimensional Hydrogen storage material Density functional theory
下载PDF
Corrigendum to“Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
2
作者 李志远 陈剑锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期586-586,共1页
The signs of the electric field markers in Figs.2 and 4 of the paper[Chin.Phys.B 32104211(2023)]have been corrected.These modifications do not affect the results derived in the paper.
关键词 CORRIGENDUM atomic-scale electromagnetic theory two-dimensional materials transfer matrix method
下载PDF
SOLVING THE PROPAGATION OF ELECTROMAGNETIC WAVE IN A SIMPLE TWO-DIMENSIONALINHOMOGENEOUS MEDIUM BASED ON SYMPLECTIC GEOMETRICAL THEORY
3
作者 Zhao Jin Wu Xianliang Fu Biao(Dept. of Electric Eng. and Info. Science, Anhui University, Hefei 230039)Li Shixiong(Dept. of Mathematics, Anhui University, Hefei 230039) 《Journal of Electronics(China)》 2002年第3期265-269,共5页
A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem o... A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem of electromagnetic wave is translated into non-caustic problem by the coordinate transform on the symplectic space. The high-frequency approximation solution that includes the caustic region is obtained with the method combining with the geometrical optics. The drawback that the solution in the caustic region can not be obtained with geometrical optics is overcome by this method. The results coincide well with that of finite element method. 展开更多
关键词 Symplectic geometrical theory High-frequency approximation CAUSTICS two-dimensional inhomogeneous medium
下载PDF
Two-dimensional analyses of delamination buckling of symmetrically cross-ply rectangular laminates 被引量:5
4
作者 薛江红 罗庆姿 +1 位作者 韩峰 刘人怀 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第5期597-612,共16页
The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted bu... The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted buckling load decreases as the length of the laminate increases. Two-dimensional analyses are employed in this paper by extending the one-dimensional model to take into consideration of the influence of the delamination width on the buckling performance of the laminates. The laminate is simply supported containing a through width delamination. A new parameterβ defined as the ratio of delamination length to delamination width is introduced with an emphasis on the influence of the delamination size. It is found that (i) when the ratio β is greater than one snap-through buckling prevails, the buckling load is determined by the delamination size and depth only; (ii) as the ratio β continues to increase, the buckling load will approach to a constant value. Solutions are verified with the well established results and are found in good agreement with the latter. 展开更多
关键词 two-dimensional analysis rectangular laminate DELAMINATION BUCKLING laminate theory
下载PDF
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems 被引量:2
5
作者 严承华 王赤忠 程尔升 《China Ocean Engineering》 SCIE EI 2001年第2期291-300,共10页
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ... A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory. 展开更多
关键词 liquid sloshing finite element two-dimensional nonlinear theory time domain second order theory
下载PDF
Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications 被引量:1
6
作者 Zhuo Xu Ming Chen Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期106-113,共8页
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi... Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction. 展开更多
关键词 two-dimensional perovskites Pseudohalides Density functional theory Electronic and excitonic properties
下载PDF
Two-dimensional equations for thin-films of ionic conductors 被引量:1
7
作者 Shuting LU Chunli ZHANG +1 位作者 Weiqiu CHEN Jiashi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第8期1071-1088,共18页
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i... A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency. 展开更多
关键词 ionic conduction and diffusion linearized Poisson-Nernst-Planck(PNP) theory two-dimensional(2D) equation ionic conductor thin-film
下载PDF
Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction 被引量:1
8
作者 Kun Liang Anika Tabassum +6 位作者 Manish Kothakonda Xiaodong Zhang Ruiqi Zhang Brianna Kenney Brent D.Koplitz Jianwei Sun Michael Nagui 《Materials Reports(Energy)》 2022年第1期88-95,共8页
In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited muc... In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited much higher electrocatalytic activity than its carbide analogues,achieving an onset overpotential of 53 mV and Tafel slope of 86 mV dec^(-1),superior to the titanium carbide with onset overpotential of 649 mV and Tafel slope of 303 mV dec^(-1).The obtained onset overpotential for 2D titanium carbonitride is lower than those of all the reported transition metal carbides MXene catalysts without additives,so far.Density functional theory calculations were conducted to further understand the electrochemical performance.The calculation results show that a greater number of occupied states are active for Ti_(3)CNO_(2),revealing free energy for the adsorption of atomic hydrogen closer to 0 than that of Ti_(3)C_(2)O_(2).Both experimental and calculation studies demonstrate the excellent electrocatalytic behavior of titanium carbonitride.The investigation of 2D titanium carbonitride opens up a promising paradigm for the conscious design of high-performance non-precious metal catalyst for hydrogen generation. 展开更多
关键词 two-dimensional Titanium carbonitride MXene NANOSHEETS Hydrogen evolution ELECTROCATALYST Density functional theory calculation
下载PDF
Topological aspect of disclinations in two-dimensional crystals
9
作者 齐维开 朱涛 +1 位作者 陈勇 任继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1002-1008,共7页
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are t... By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. 展开更多
关键词 topological current theory DISCLINATIONS two-dimensional crystals
下载PDF
First-principles study of a new BP_(2)two-dimensional material
10
作者 Zhizheng Gu Shuang Yu +6 位作者 Zhirong Xu Qi Wang Tianxiang Duan Xinxin Wang Shijie Liu Hui Wang Hui Du 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期542-546,共5页
Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2using the first principles method, and fi... Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2using the first principles method, and find a new PMM2 sheet.The analysis of the phonon dispersive curves shows that the 2D PMM2 is dynamic stable. The study of molecular dynamics shows that the 2D PMM2 can be stable under high temperature, even at 600 K. Most importantly, when a suitable strain is applied, the structure can exhibit other electronic properties such as direct band gap semiconductor. In addition, the small strain can tune the band gap value of the PMM2 structure to around 1.4 e V, which is very close to the ideal band gap of solar materials. Therefore, the 2D PMM2 may have potential applications in the field of photovoltaic materials. 展开更多
关键词 two-dimensional material density functional theory direct band gap STRAIN
下载PDF
Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
11
作者 王佳 会国涛 解相朋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期79-84,共6页
We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and... We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and the uncertainty phenomenon,which appears typically in practical environments,is modeled by a convex bounded(polytope type) uncertain domain.The stability analysis and control synthesis of uncertain discrete-time 2D systems are then developed by applying the Lyapunov stability theory.In the processes of stability analysis and control synthesis,the obtained stability/stabilzaition conditions become less conservative by applying some novel relaxed techniques.Moreover,the obtained results are formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,numerical examples are given to demonstrate the effectiveness of the obtained results. 展开更多
关键词 uncertain two-dimensional systems Roesser model Lyapunov stability theory control synthesis
下载PDF
Two-Dimensional Organometallic TM3–C12S12 Monolayers for Electrocatalytic Reduction of CO2
12
作者 Jin-Hang Liu Li-Ming Yang Eric Ganz 《Energy & Environmental Materials》 2019年第3期193-200,共8页
Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investig... Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investigate the electrocatalytic performance of the first transition metal series TM3–C12S12 monolayers on CO2 using spin-polarized density functional theory.The calculations show that M3–C12S12 exhibits excellent catalytic activity and selectivity in the catalytic reduction in CO2.The main reduction products of Sc,Ti,and Cr are CH4.V,Mn,Fe and Zn mainly produce HCOOH,and Co produces HCHO,while CO is the main product for Ni and Cu.For Sc,Ti,and Cr,the overpotentials are>0.7 V,while for V,Mn,Fe,Co,Ni,Cu,Zn,the overpotentials are very low and range from 0.27 to 0.47 V.Therefore,our results indicate that many of the M3–C12S12 monolayers are expected to be excellent and efficient CO2 reduction catalysts. 展开更多
关键词 density functional theory electrocatalytic reduction of CO2 organometallic TM3-C12S12 Monolayers single atom catalyst two-dimensional materials
下载PDF
Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
13
作者 李志远 陈剑锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期483-502,共20页
Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. A... Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport. 展开更多
关键词 atomic-scale electromagnetic theory two-dimensional materials transfer matrix method
下载PDF
Elongated antiferromagnetic skyrmion in two-dimensional RuF_(4)
14
作者 Mu Lan Rong Wang +5 位作者 Shihao Wei Lezhong Li Wenning Ren Xing Zhang Xi Zhang Gang Xiang 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3282-3287,共6页
Two-dimensional(2D)antiferromagnetic(AFM)skyrmions are free from stray magnetic field and skyrmion Hall effect,and can be driven by a small current density up to a high speed,desirable for low-power spintronic applica... Two-dimensional(2D)antiferromagnetic(AFM)skyrmions are free from stray magnetic field and skyrmion Hall effect,and can be driven by a small current density up to a high speed,desirable for low-power spintronic applications.However,most 2D AFM skyrmions are realized in complex heterostructured materials,which impedes the dense integration of spintronic devices.Here,we propose that 2D AFM skyrmions can be achieved in ruthenium tetrafluoride(RuF_(4))monolayer using hybrid functional theory combined with atomistic spin dynamics simulations.Our study indicates that 2D RuF_(4)is dynamically stable and its nondegenerate vibration modes in optical branches are either Raman or infrared active.Furthermore,2D RuF_(4)acts as an indirect bandgap semiconductor with an out-of-plane AFM state.Notably,the presence of a weak Dzyaloshinskii-Moriya interaction in 2D RuF_(4)leads to a spin spiral ground state at low temperatures,enabling the formation of AFM skyrmions with possible length modulation by an external magnetic field.Our results give insight into 2D RuF_(4)and may provide an intriguing platform for 2D AFM skyrmion-based spintronic applications. 展开更多
关键词 two-dimensional antiferromagnetic skyrmion density functional theory spin dynamics magnetic field modulation
原文传递
Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries:A DFT study
15
作者 Xin-Tong Zhao Jin-Zhi Guo +2 位作者 Wen-Liang Li Jing-Ping Zhang Xing-Long Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期180-184,共5页
Nowadays,lithium-ion batteries(LIBs)play a crucial role in modern society in the aspect of portable electronic devices and large-scale smart grids.However,the current performance of lithium-ion batteries has been unab... Nowadays,lithium-ion batteries(LIBs)play a crucial role in modern society in the aspect of portable electronic devices and large-scale smart grids.However,the current performance of lithium-ion batteries has been unable to meet the growing expectations of society and scientific community.Herein,we have synthetically investigated availability of 2D Ni-TABQ monolayer as anode based on DFT for LIBs applications.Our findings have demonstrated that 2D Ni-TABQ monolayer is a semiconductor with a small band gap of 0.2 eV,which suggest that the electronic property of 2D Ni-TABQ monolayer would take place an evident shift from semiconductor property to metallic property after Li adsorption.Furthermore,we checked the stability of 2D Ni-TABQ monolayer and investigated the viability of exfoliation from bulk multilayer Ni-TABQ to form 2D Ni-TABQ monolayer in the light of exfoliation energy and binding energy.We continuously studied electrochemical properties of 2D Ni-TABQ monolayer with respect of theoretical specific capacity,Li-ion diffusion barriers and open-circuit voltage.During the charging process,2D Ni-TABQ monolayer can achieve a high specific capacity of 722 m Ah/g with an open-circuit voltage range from 1.12 V to 0.22 V.These aforementioned results make the 2D Ni-TABQ monolayer a promising anode for LIBs. 展开更多
关键词 The first principles Density functional theory Lithium-ion battery Anode material two-dimensional material
原文传递
Teleparallel equivalent theory of (1+1)-dimensional gravity
16
作者 Gamal G.L.Nashed 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期124-131,共8页
A theory of (1+1)-dimensional gravity is constructed on the basis of the teleparallel equivalent of general relativity. The fundamental field variables are the tetrad fields ei^μ and the gravity is attributed to t... A theory of (1+1)-dimensional gravity is constructed on the basis of the teleparallel equivalent of general relativity. The fundamental field variables are the tetrad fields ei^μ and the gravity is attributed to the torsion. A dilatonic spherically symmetric exact solution of the gravitational field equations characterized by two parameters M and Q is derived. The energy associated with this solution is calculated using the two-dimensional gravitational energy- momentum formula. 展开更多
关键词 teleparallel equivalent theory of (1+1)-dimensional gravity two-dimensional spherically symmetric dilatonic black hole ENERGY
下载PDF
Anisotropic phonon thermal transport in two-dimensional layered materials 被引量:1
17
作者 Yuxin Cai Muhammad Faizan +5 位作者 Huimin Mu Yilin Zhang Hongshuai Zou Hong Jian Zhao Yuhao Fu Lijun Zhang 《Frontiers of physics》 SCIE CSCD 2023年第4期217-225,共9页
Two-dimensional layered materials(2DLMs)have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties.Different members of 2DLMs exhibit unique anisotropic electric... Two-dimensional layered materials(2DLMs)have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties.Different members of 2DLMs exhibit unique anisotropic electrical,optical,and thermal properties,fundamentally related to their crystal structure.Among them,directional heat transfer plays a vital role in the thermal management of electronic devices.Here,we use density functional theory calculations to investigate the thermal transport properties of representative layered materials:β-InSe,γ-InSe,MoS2,and h-BN.We found that the lattice thermal conductivities ofβ-InSe,γ-InSe,MoS_(2),and h-BN display diverse anisotropic behaviors with anisotropy ratios of 10.4,9.4,64.9,and 107.7,respectively.The analysis of the phonon modes further indicates that the phonon group velocity is responsible for the anisotropy of thermal transport.Furthermore,the low lattice thermal conductivity of the layered InSe mainly comes from low phonon group velocity and atomic masses.Our findings provide a fundamental physical understanding of the anisotropic thermal transport in layered materials.We hope this study could inspire the advancement of 2DLMs thermal management applications in next-generation integrated electronic and optoelectronic devices. 展开更多
关键词 thermal conductivity two-dimensional layered materials firstprinciples calculation Boltzmann transport theory
原文传递
Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca_(2)N
18
作者 Baoyu Liu Ziqiang Chen +5 位作者 Rui Xiong Xuhui Yang Yinggan Zhang Teng Xie Cuilian Wen Baisheng Sa 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期487-491,共5页
Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory ... Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer. 展开更多
关键词 two-dimensional electride Ca_(2)N Density functional theory calculations Hydrogen evolution reaction Transition metal doping
原文传递
Piezoelectricity in two-dimensional group-Ill monochalcogenides 被引量:12
19
作者 Wenbin Li Ju Li 《Nano Research》 SCIE EI CAS CSCD 2015年第12期3796-3802,共7页
It is found that several layer-phase group-III monochalcogenides, including GaS, GaSe, and InSe, are piezoelectric in their monolayer form. First-principles calculations reveal that the piezoelectric coefficients of m... It is found that several layer-phase group-III monochalcogenides, including GaS, GaSe, and InSe, are piezoelectric in their monolayer form. First-principles calculations reveal that the piezoelectric coefficients of monolayer GaS, GaSe, and InSe (2.06, 2.30, and 1.46 pm-V-1) are of the same order of magnitude as previously discovered two-dimensional (2D) piezoelectric materials such as boron nitride (BN) and MoS2 monolayers. This study therefore indicates that a strong piezoelectric response can be obtained in a wide range of two-dimensional materials with broken inversion symmetry. The co-existence of piezoelectricity and superior photo-sensitivity in these monochalcogenide monolayer semiconductors means they have the potential to allow for the integration of electromechanical and optical sensors on the same material platform. 展开更多
关键词 PIEZOELECTRICITY two-dimensional(2D) material monochalcogenide density functional theory(DFT)calculation
原文传递
Water hammer prediction and control:the Green's function method 被引量:4
20
作者 Li-Jun Xuan Feng Mao Jie-Zhi Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期266-273,共8页
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates... By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated. 展开更多
关键词 Water hammer two-dimensional analytical theory - Pressure transients Pipe-valve flow control
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部