期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
人脸图像识别中非贪婪L1范数的2DPCA最大化鲁棒算法
1
作者 刘辉 马文 王志锋 《南京邮电大学学报(自然科学版)》 北大核心 2016年第2期90-95,共6页
基于L1范数的二维主成分分析是近年来提出的一种在图像域降维和特征提取的方法。通常,直接求解L1范数最大化问题很困难,因此,一种贪婪的策略被提出来了。然而,这种策略的初始化投影是随意选取的,为了获得更好的投影向量,得到一个最优的... 基于L1范数的二维主成分分析是近年来提出的一种在图像域降维和特征提取的方法。通常,直接求解L1范数最大化问题很困难,因此,一种贪婪的策略被提出来了。然而,这种策略的初始化投影是随意选取的,为了获得更好的投影向量,得到一个最优的局部解,提出了一个非贪婪的L1范数最大化算法,该非贪婪算法具有三大优势:使用L1范数和非贪婪策略对于异常值很稳健;与PCA-L1相比较,更多的空间结构信息得到了保留;相比2DPCA-L1,所有的投影方向可以被优化并且可以获得更好的解决方案。人脸和其他数据集上的实验结果验证了所提出的方法更加有效。 展开更多
关键词 二维主成分分析 L1范数 非贪婪算法 异常值 主成分分析法
下载PDF
Generalized two-dimensional correlation near-infrared spectroscopy and principal component analysis of the structures of methanol and ethanol 被引量:5
2
作者 Liu Hao Xu JianPing +1 位作者 Qu LingBo Xiang BingRen 《Science China Chemistry》 SCIE EI CAS 2010年第5期1154-1159,共6页
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c... Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents. 展开更多
关键词 NIR(near-infrared) two-dimensional (2d) CORRELATION spectroscopy principal component analysis (pca) METHANOL ETHANOL
原文传递
归一双向加权(2D)^2PCA的手指静脉识别方法 被引量:24
3
作者 管凤旭 王科俊 +1 位作者 刘靖宇 马慧 《模式识别与人工智能》 EI CSCD 北大核心 2011年第3期417-424,共8页
为快速有效地进行手指静脉识别,针对双向二维主成分分析算法降维的特点,并对该算法进行改进,提出在经过图像预处理的手指静脉图像基础上,特征值归一化并双向加权(2D)2PCA的手指静脉识别方法((OW2D)2PCA).分析了累积特征率对(2D)2PCA的影... 为快速有效地进行手指静脉识别,针对双向二维主成分分析算法降维的特点,并对该算法进行改进,提出在经过图像预处理的手指静脉图像基础上,特征值归一化并双向加权(2D)2PCA的手指静脉识别方法((OW2D)2PCA).分析了累积特征率对(2D)2PCA的影响,以及加权值、特征值归一加权值和累积特征率对W(2D)2PCA、OW(2D)2PCA、(W2D)2PCA、(OW2D)2PCA的影响.通过建立手指静脉图像库的实验结果表明,文中提出方法能够取得较好的识别效果;对(2D)2PCA提取特征向量中的冗余信息有很强的抑制作用,双向加权比单向加权效果更好;而且(OW2D)2PCA的平均识别率高于2DPCA、(2D)2PCA、W(2D)2PCA、(W2D)2PCA和OW(2D)2PCA. 展开更多
关键词 手指静脉识别 双向二维主成分分析((2d)2pca) 双向加权二维主成分分析((W2d)2pca) 特征值归一双向加权二维主成分分析((OW2d)2pca)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部