The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications ...The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov sub...A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.展开更多
Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realizatio...Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realization of a class of random network models in which the connection probability between two vertices (i, j) is a specific function of degrees ki and kj. In the framework of the configuration model of random graphsp we find the analytical expressions for the degree correlation and clustering as a function of the variance of the desired degree distribution. The obtained expressions are checked by means of numerical simulations. Possible applications of our model are discussed.展开更多
Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, emb...Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, embryonic cell and its input and output(I/O) resources are considered as a whole, named functional unit(FU). The FU fault detection coverage parameter is introduced to ECA reliability analysis, and a new ECA reliability evaluation method based on the Markov status graph model is proposed.Simulation experiment results indicate that the proposed ECA reliability evaluation method can evaluate the ECA reliability more effectively and accurately. Based on the proposed reliability evaluation method, the influence of parameters change on the ECA reliability is studied, and simulation experiment results show that ECA reliability can be improved by increasing the FU fault detection coverage and reducing the FU failure rate. In addition, by increasing the scale of the ECA, the reliability increases to the maximum first, and then it will decrease continuously. ECA reliability variation rules can not only provide theoretical guidance for the ECA optimization design, but also point out the direction for further research.展开更多
Recently,automation is considered vital in most fields since computing methods have a significant role in facilitating work such as automatic text summarization.However,most of the computing methods that are used in r...Recently,automation is considered vital in most fields since computing methods have a significant role in facilitating work such as automatic text summarization.However,most of the computing methods that are used in real systems are based on graph models,which are characterized by their simplicity and stability.Thus,this paper proposes an improved extractive text summarization algorithm based on both topic and graph models.The methodology of this work consists of two stages.First,the well-known TextRank algorithm is analyzed and its shortcomings are investigated.Then,an improved method is proposed with a new computational model of sentence weights.The experimental results were carried out on standard DUC2004 and DUC2006 datasets and compared to four text summarization methods.Finally,through experiments on the DUC2004 and DUC2006 datasets,our proposed improved graph model algorithm TG-SMR(Topic Graph-Summarizer)is compared to other text summarization systems.The experimental results prove that the proposed TG-SMR algorithm achieves higher ROUGE scores.It is foreseen that the TG-SMR algorithm will open a new horizon that concerns the performance of ROUGE evaluation indicators.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they ...To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most ...Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.展开更多
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap...With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.展开更多
Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the con...Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.展开更多
Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to dist...Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment.展开更多
Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.The...Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.展开更多
With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power...With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid.展开更多
Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targets...Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targetsmust be discovered regularly,and then tailored medicines against HCC must be developed.In this research,we used biomarkers of HCC to collect the protein interaction network related to HCC.Initially,DC(Degree Centrality)was employed to assess the importance of each protein.Then an improved Graph Coloring algorithm was used to rank the target proteins according to the interaction with the primary target protein after assessing the top ranked proteins related to HCC.Finally,physio-chemical proteins are used to evaluate the outcome of the top ranked proteins.The proposed graph theory and machine learning techniques have been compared with six existing methods.In the proposed approach,16 proteins have been identified as potential therapeutic drug targets for Hepatic Carcinoma.It is observable that the proposed method gives remarkable performance than the existing centrality measures in terms of Accuracy,Precision,Recall,Sensitivity,Specificity and F-measure.展开更多
Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the spa...Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the space dimension grows. Here, Markov Graph Model (MGM) is proposed to handle this issue. Specification of the model is described, and several methods for probability computation with MGM are also presented. Based on MGM, algorithms for building user model and predicting user action are presented. And the performance of these algorithms such as computing complexity, prediction accuracy, and storage requirement of MGM are analyzed.展开更多
In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the...In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.展开更多
The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timi...The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timing analysis, but the best method found till the moment is the Static Timing Analysis (STA). It is considered the best solution because of its accuracy and fast run time. Transistor level models are mandatory required for the best estimating methods, since these take into consideration all analysis scenarios to overcome problems of multiple-input switching, false paths and high stacks that are found in classic CMOS gates. In this paper, transistor level graph model is proposed to describe the behavior of CMOS circuits under predictive Nanotechnology SPICE parameters. This model represents the transistor in the CMOS circuit as nodes in the graph regardless of its positions in the gates to accurately estimating the timing analysis rather than inaccurate estimating which caused by the false paths at the gate level. Accurate static timing analysis is estimated using the model proposed in this paper. Building on the proposed model and the graph theory concepts, new algorithms are proposed and simulated to compute transistor timing analysis using RC model. Simulation results show the validity of the proposed graph model and its algorithms by using predictive Nano-Technology SPICE parameters for the tested technology. An important and effective extension has been achieved in this paper for a one that was published in international conference.展开更多
This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awirele...This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area.展开更多
基金supported by National Key R&D Program of China(No.2022YFB3104500)Natural Science Foundation of Jiangsu Province(No.BK20222013)Scientific Research Foundation of Nanjing Institute of Technology(No.3534113223036)。
文摘The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
文摘A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375025 and 10275027) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No 704035)
文摘Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realization of a class of random network models in which the connection probability between two vertices (i, j) is a specific function of degrees ki and kj. In the framework of the configuration model of random graphsp we find the analytical expressions for the degree correlation and clustering as a function of the variance of the desired degree distribution. The obtained expressions are checked by means of numerical simulations. Possible applications of our model are discussed.
基金supported by the National Natural Science Foundation of China(61601495,61372039)。
文摘Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, embryonic cell and its input and output(I/O) resources are considered as a whole, named functional unit(FU). The FU fault detection coverage parameter is introduced to ECA reliability analysis, and a new ECA reliability evaluation method based on the Markov status graph model is proposed.Simulation experiment results indicate that the proposed ECA reliability evaluation method can evaluate the ECA reliability more effectively and accurately. Based on the proposed reliability evaluation method, the influence of parameters change on the ECA reliability is studied, and simulation experiment results show that ECA reliability can be improved by increasing the FU fault detection coverage and reducing the FU failure rate. In addition, by increasing the scale of the ECA, the reliability increases to the maximum first, and then it will decrease continuously. ECA reliability variation rules can not only provide theoretical guidance for the ECA optimization design, but also point out the direction for further research.
文摘Recently,automation is considered vital in most fields since computing methods have a significant role in facilitating work such as automatic text summarization.However,most of the computing methods that are used in real systems are based on graph models,which are characterized by their simplicity and stability.Thus,this paper proposes an improved extractive text summarization algorithm based on both topic and graph models.The methodology of this work consists of two stages.First,the well-known TextRank algorithm is analyzed and its shortcomings are investigated.Then,an improved method is proposed with a new computational model of sentence weights.The experimental results were carried out on standard DUC2004 and DUC2006 datasets and compared to four text summarization methods.Finally,through experiments on the DUC2004 and DUC2006 datasets,our proposed improved graph model algorithm TG-SMR(Topic Graph-Summarizer)is compared to other text summarization systems.The experimental results prove that the proposed TG-SMR algorithm achieves higher ROUGE scores.It is foreseen that the TG-SMR algorithm will open a new horizon that concerns the performance of ROUGE evaluation indicators.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
基金Supported by Shaanxi Province Key Research and Development Project (2021GY-280)the National Natural Science Foundation of China (No.61834005,61772417,61802304)。
文摘Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2013RC0114111 Project of China under Grant No.B08004
文摘With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.
基金Supported by the National Natural Science Foundation of China(60303025 ,60673017)the Natural Science Foundation of Jiangsu Prov-ince (BK2007137)the Program for New Century Excellent Talents in University
文摘Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.
基金This work was supported by the National Key R&D Program of China(2020YFB0905900).
文摘Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment.
文摘Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.
基金supported by the Science and Technology Project of the State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid.
基金supported by Taif University with Research Grant(TURSP-2020/77).
文摘Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targetsmust be discovered regularly,and then tailored medicines against HCC must be developed.In this research,we used biomarkers of HCC to collect the protein interaction network related to HCC.Initially,DC(Degree Centrality)was employed to assess the importance of each protein.Then an improved Graph Coloring algorithm was used to rank the target proteins according to the interaction with the primary target protein after assessing the top ranked proteins related to HCC.Finally,physio-chemical proteins are used to evaluate the outcome of the top ranked proteins.The proposed graph theory and machine learning techniques have been compared with six existing methods.In the proposed approach,16 proteins have been identified as potential therapeutic drug targets for Hepatic Carcinoma.It is observable that the proposed method gives remarkable performance than the existing centrality measures in terms of Accuracy,Precision,Recall,Sensitivity,Specificity and F-measure.
文摘Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the space dimension grows. Here, Markov Graph Model (MGM) is proposed to handle this issue. Specification of the model is described, and several methods for probability computation with MGM are also presented. Based on MGM, algorithms for building user model and predicting user action are presented. And the performance of these algorithms such as computing complexity, prediction accuracy, and storage requirement of MGM are analyzed.
基金This work was supported by the National Natural Science Foundation of China(62122063,62073268,U22B2036,11931015)the Young Star of Science and Technology in Shaanxi Province(2020KJXX-078)+1 种基金the National Science Fund for Distinguished Young Scholars(62025602)the XPLORER PRIZE。
文摘In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.
文摘The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timing analysis, but the best method found till the moment is the Static Timing Analysis (STA). It is considered the best solution because of its accuracy and fast run time. Transistor level models are mandatory required for the best estimating methods, since these take into consideration all analysis scenarios to overcome problems of multiple-input switching, false paths and high stacks that are found in classic CMOS gates. In this paper, transistor level graph model is proposed to describe the behavior of CMOS circuits under predictive Nanotechnology SPICE parameters. This model represents the transistor in the CMOS circuit as nodes in the graph regardless of its positions in the gates to accurately estimating the timing analysis rather than inaccurate estimating which caused by the false paths at the gate level. Accurate static timing analysis is estimated using the model proposed in this paper. Building on the proposed model and the graph theory concepts, new algorithms are proposed and simulated to compute transistor timing analysis using RC model. Simulation results show the validity of the proposed graph model and its algorithms by using predictive Nano-Technology SPICE parameters for the tested technology. An important and effective extension has been achieved in this paper for a one that was published in international conference.
文摘This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area.