Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one...Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one of them is the increased cost of coverage. In this paper, we proposea sustainable wireless sensor networks system, which avoids the problemsbrought by 5G network system to some extent. In this system, deployingrelays and selecting routing are for the sake of communication and charging.The main aim is to minimize the total energy-cost of communication underthe precondition, where each terminal with low-power should be charged byat least one relay. Furthermore, from the perspective of graph theory, weextract a combinatorial optimization problem from this system. After that,as to four different cases, there are corresponding different versions of theproblem. We give the proofs of computational complexity for these problems,and two heuristic algorithms for one of them are proposed. Finally, theextensive experiments compare and demonstrate the performances of thesetwo algorithms.展开更多
This paper addresses the scheduling and inventory management of a straight pipeline system connecting a single refinery to multiple distribution centers.By increasing the number of batches and time periods,maintaining...This paper addresses the scheduling and inventory management of a straight pipeline system connecting a single refinery to multiple distribution centers.By increasing the number of batches and time periods,maintaining the model resolution by using linear programming-based methods and commercial solvers would be very time-consuming.In this paper,we make an attempt to utilize the problem structure and develop a decomposition-based algorithm capable of finding near-optimal solutions for large instances in a reasonable time.The algorithm starts with a relaxed version of the model and adds a family of cuts on the fly,so that a near-optimal solution is obtained within a few iterations.The idea behind the cut generation is based on the knowledge of the underlying problem structure.Computational experiments on a real-world data case and some randomly generated instances confirm the efficiency of the proposed algorithm in terms of the solution quality and time.展开更多
基金The authors would like to extend their gratitude to King Saud University(Riyadh,Saudi Arabia)for funding this research through Researchers Supporting Project number(RSP-2021/260)And this work was supported by the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ4949)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200883).
文摘Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one of them is the increased cost of coverage. In this paper, we proposea sustainable wireless sensor networks system, which avoids the problemsbrought by 5G network system to some extent. In this system, deployingrelays and selecting routing are for the sake of communication and charging.The main aim is to minimize the total energy-cost of communication underthe precondition, where each terminal with low-power should be charged byat least one relay. Furthermore, from the perspective of graph theory, weextract a combinatorial optimization problem from this system. After that,as to four different cases, there are corresponding different versions of theproblem. We give the proofs of computational complexity for these problems,and two heuristic algorithms for one of them are proposed. Finally, theextensive experiments compare and demonstrate the performances of thesetwo algorithms.
文摘This paper addresses the scheduling and inventory management of a straight pipeline system connecting a single refinery to multiple distribution centers.By increasing the number of batches and time periods,maintaining the model resolution by using linear programming-based methods and commercial solvers would be very time-consuming.In this paper,we make an attempt to utilize the problem structure and develop a decomposition-based algorithm capable of finding near-optimal solutions for large instances in a reasonable time.The algorithm starts with a relaxed version of the model and adds a family of cuts on the fly,so that a near-optimal solution is obtained within a few iterations.The idea behind the cut generation is based on the knowledge of the underlying problem structure.Computational experiments on a real-world data case and some randomly generated instances confirm the efficiency of the proposed algorithm in terms of the solution quality and time.