期刊文献+
共找到511,497篇文章
< 1 2 250 >
每页显示 20 50 100
Target Inactivation and Recovery in Two-Layer Networks
1
作者 宋新芳 王文元 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期9-12,共4页
We study the target inactivation and recovery in two-layer networks. Five kinds of strategies are chosen to attack the two-layer networks and to recover the activity of the networks by increasing the inter-layer coupl... We study the target inactivation and recovery in two-layer networks. Five kinds of strategies are chosen to attack the two-layer networks and to recover the activity of the networks by increasing the inter-layer coupling strength. The results show that we can easily control the dying state effectively by a randomly attacked situation. We then investigate the recovery activity of the networks by increasing the inter-layer coupled strength. The optimal values of the inter-layer coupled strengths are found, which could provide a more effective range to recovery activity of complex networks. As the multilayer systems composed of active and inactive elements raise important and interesting problems, our results on the target inactivation and recovery in two-layer networks would be extended to different studies. 展开更多
关键词 NET Target Inactivation and Recovery in two-layer networks BA ER As
下载PDF
Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy
2
作者 Chang-Quan Chen Qiong-Lin Dai +1 位作者 Wen-Chen Han Jun-Zhong Yang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第2期131-134,共4页
We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one l... We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks. 展开更多
关键词 SDG Evolutionary Games in two-layer networks with the Introduction of Dominant Strategy PDG
下载PDF
Two-layer networked learning control using self-learning fuzzy control algorithms 被引量:3
3
作者 Du Dajun Fei Minrui +1 位作者 Hu Huosheng Li Lixiong 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第12期2124-2131,共8页
Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control sys... Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system. 展开更多
关键词 自学习模糊控制算法 双层网络学习控制系统 径向基函数神经网络 三次样条校对机
下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
4
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
5
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization
6
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Cooperative Caching Strategy Based on Two-Layer Caching Model for Remote Sensing Satellite Networks
7
作者 Rui Xu Xiaoqiang Di +3 位作者 Hao Luo Hui Qi Xiongwen He Wenping Lei 《Computers, Materials & Continua》 SCIE EI 2023年第5期3903-3922,共20页
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw... In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission. 展开更多
关键词 Information centric networking caching strategy two-layer caching model hierarchical division
下载PDF
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking 被引量:1
8
作者 QIN Boyu ZHANG Dong +1 位作者 TANG Shuo XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1375-1396,共22页
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’... This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme. 展开更多
关键词 fixed-wing unmanned aerial vehicle(UAV)swarm two-layer control formation-containment dynamic target tracking
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
9
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 Battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance 被引量:13
10
作者 Yang XU Delin LUO +2 位作者 Dongyu LI Yancheng YOU Haibin DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2679-2693,共15页
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in... This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results. 展开更多
关键词 Affine formation control Collision avoidance Lyapunov stability Target enclosing two-layer strategy
原文传递
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
11
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:3
12
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Two-Layer Coupled Network Model for Topic Derivation in Public Opinion Propagation 被引量:7
13
作者 Yuexia Zhang Yixuan Feng 《China Communications》 SCIE CSCD 2020年第3期176-187,共12页
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub... In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion. 展开更多
关键词 complex network PUBLIC OPINION PROPAGATION SEIR model
下载PDF
Synchronizability of Two-Layer Cluster Ring Networks 被引量:1
14
作者 Yang Deng Zhen Jia Lin Liao 《Communications and Network》 2019年第2期35-51,共17页
Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, smal... Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability. 展开更多
关键词 two-layer CLUSTER Ring network SYNCHRONIZABILITY INTERLAYER LINKING WEIGHT INTERLAYER LINKING FRACTION
下载PDF
Opinion consensus incorporating higher-order interactions in individual-collective networks
15
作者 叶顺 涂俐兰 +2 位作者 王先甲 胡佳 王薏潮 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期105-115,共11页
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this... In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster. 展开更多
关键词 two-layer social networks individual and collective opinions higher-order interactions CONSENSUS Lyapunov's first method
下载PDF
NEAR-INFRARED OPTICAL TOMOGRAPHY IMAGE RECONSTRUCTION APPROACH BASED ON TWO-LAYERED BP NEURAL NETWORK 被引量:1
16
作者 TING LI WEITAO LI ZHIYU QIAN 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第2期143-147,共5页
An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab s... An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab software and Levenberg–Marquardt algorithm.The concept of the average optical coefficient is proposed in this paper,which is helpful to understand the distribution of the scattering photon from tumor.The reconstructive¯µs by the trained network is reasonable for showing the changes of photon number transporting inside tumor tissue.It realized the fast reconstruction of tissue optical properties and provided optical OT with a new method. 展开更多
关键词 Near-infrared optical tomography two-layered back-propagation neural network inverse problem the average optical coefficient.
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:2
17
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Characteristic analysis of scattering field in two-layer media by Green's function
18
作者 张萍 刘智颖 +2 位作者 阎守国 黄娟 张碧星 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期305-315,共11页
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th... The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality. 展开更多
关键词 Green's function method two-layer media scattering field water-immersed detection
下载PDF
Image super‐resolution via dynamic network 被引量:1
19
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
20
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部