期刊文献+
共找到339,983篇文章
< 1 2 250 >
每页显示 20 50 100
ATwo-LayerOptimal Scheduling Strategy forRural Microgrids Accounting for Flexible Loads
1
作者 Guo Zhao Chi Zhang Qiyuan Ren 《Energy Engineering》 EI 2024年第11期3355-3379,共25页
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper... In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits. 展开更多
关键词 Double carbon flexible loads ruralmicrogrid clean energy consumption two-layer scheduling improved adaptive genetic algorithm
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
3
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS CLASSIFICATION AlexNet50 transfer learning hyperparameter tuning optimIZER
下载PDF
Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm
4
作者 Qinhui Liu Laizheng Zhu +2 位作者 Zhijie Gao Jilong Wang Jiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期811-843,共33页
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p... To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research. 展开更多
关键词 Dual resource scheduling workpiece batching RESCHEDULING particle swarm optimization genetic algorithm
下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption
5
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 Renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
下载PDF
Optimal Scheduling Strategy of Source-Load-Storage Based onWind Power Absorption Benefit
6
作者 Jie Ma Pengcheng Yue +6 位作者 Haozheng Yu Yuqing Zhang Youwen Zhang Cuiping Li Junhui Li Wenwen Qin Yong Guo 《Energy Engineering》 EI 2024年第7期1823-1846,共24页
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ... In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit. 展开更多
关键词 Wind power consumption two-layer optimal demand response rolling scheduling wind curtailment penalty
下载PDF
基于D-optimal法优化香菇菌种培养基质配方的研究 被引量:2
7
作者 任爱民 包玉政 +7 位作者 韩爱民 李通 刘明军 王晓巍 杨建杰 杨琴 杨仁录 付爱芳 《寒旱农业科学》 2024年第8期724-733,共10页
为了筛选和优化香菇原种及栽培种的培养基质配方,采用D-optimal设计方法,以麦粒和木屑不同配比为原料优化香菇原种培养基质,以木屑、玉米芯、麸皮不同配比为原料优化香菇栽培种培养基质,以香菇品种L808作为供试菌种,分别以其菌丝萌发期... 为了筛选和优化香菇原种及栽培种的培养基质配方,采用D-optimal设计方法,以麦粒和木屑不同配比为原料优化香菇原种培养基质,以木屑、玉米芯、麸皮不同配比为原料优化香菇栽培种培养基质,以香菇品种L808作为供试菌种,分别以其菌丝萌发期、菌丝长速、满袋期为评价指标,通过对各评价指标的测量,建立了各配比基质与香菇培养基质配方响应值之间的回归模型,从而科学的优化出香菇原种及栽培种栽培基质的配方。试验结果表明,香菇原种栽培基质最优配方为50%麦粒+50%木屑;香菇栽培种栽培基质最优配方为37.69%玉米芯+23.33%麸皮+38.98%木屑。在以上2个配方的栽培基质接种后,香菇菌丝的生长旺盛,萌发期短、满袋期短,且理化性质较优,说明优化得到的栽培基质配方具有较高的可行性,该设计方法也在优化培养料配比上是科学并且可行的。 展开更多
关键词 D-optimal 香菇 原种 栽培种 培养基质 配方
下载PDF
AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION 被引量:1
8
作者 Diana I.HERNÁNDEZ Diego A.RUEDA-GOMEZ Élder J.VILLAMIZAR-ROA 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期721-751,共31页
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in... In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments. 展开更多
关键词 LOTKA-VOLTERRA chemo-repulsion optimal control optimality conditions
下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
9
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 High energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Distributed Optimal Formation Control for Unmanned Surface Vessels by a Regularized Game-Based Approach 被引量:1
10
作者 Jun Shi Maojiao Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期276-278,共3页
Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a... Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed. 展开更多
关键词 REGULAR SEEKING optimal
下载PDF
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
11
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis Heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Mixture-optimal法优化红枣姜茶饮料配方工艺
12
作者 叶胜明 《食品安全导刊》 2024年第8期123-126,共4页
目的:优化红枣姜茶饮料的配方,为凉茶饮料的品质提升提供理论依据和技术指导。方法:使用Mixture–optimal对红枣姜茶饮料配方工艺进行优化,通过方差分析、显著性检验等方法验证模型的合理性,得到回归方程,推测出红枣姜茶的最优配方。结... 目的:优化红枣姜茶饮料的配方,为凉茶饮料的品质提升提供理论依据和技术指导。方法:使用Mixture–optimal对红枣姜茶饮料配方工艺进行优化,通过方差分析、显著性检验等方法验证模型的合理性,得到回归方程,推测出红枣姜茶的最优配方。结果:最优配方为干姜6 g、红枣40 g、肉豆蔻4 g、肉桂3.557 4 g、山药28.442 5 g、百合24 g和红糖30 g。结论:减少干姜和肉豆蔻的添加量,增加红枣、百合和红糖的添加量,会使红枣姜茶的口感更好。 展开更多
关键词 大枣 干姜 红枣姜茶 配方优化 口感
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
13
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
14
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 Node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm optimIZATION
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
15
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
Optimality在多个场景的时域仿真中高效性的深度研究
16
作者 黄刚 吴均 《电子技术应用》 2024年第8期42-47,共6页
随着产品的速率及复杂性越来越高,针对仿真而言,除了要求仿真本身具有非常高的精度外,还对仿真的效率提出了很高的要求。具体到不同的信号模块,如DDR系统或者高速串行信号上,基于速率越来越高,越来越希望仿真给能出“最优解”的配置,例... 随着产品的速率及复杂性越来越高,针对仿真而言,除了要求仿真本身具有非常高的精度外,还对仿真的效率提出了很高的要求。具体到不同的信号模块,如DDR系统或者高速串行信号上,基于速率越来越高,越来越希望仿真给能出“最优解”的配置,例如DDR5颗粒的ODT的最优配置,高速信号芯片的加重均衡的最优配置等参数。那么如何在成百上千种组合的参数中选择相对最优的参数呢?传统的软件只能通过大量的扫描来进行筛选,在仿真时间和工程师的精力两方面都有比较大的耗费。使用Optimality软件,通过分享一些具体的仿真案例,展现软件的智能性,帮助使用者更快速挑选出最优的参数,使DDR及高速串行的仿真工作变得更加轻松,充分体现出Optimality软件的高效性。 展开更多
关键词 optimalITY DDR5 DDR4 ODT SystemSI 加重均衡
下载PDF
Research on the Mechanism of Multi-Sensor Fusion Configuration Based on the Optimal Principle of the Vehicle
17
作者 Zhao Binggen Zeng Dong +2 位作者 Lin Haoyu Qiu Xubo Hu Pijie 《汽车技术》 CSCD 北大核心 2024年第10期28-37,共10页
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th... In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies. 展开更多
关键词 Multi-sensor fusion Intelligent driving Multi-objective optimization Vehicle optimization
下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
18
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
下载PDF
Optimal Shape Factor and Fictitious Radius in the MQ-RBF:Solving Ill-Posed Laplacian Problems
19
作者 Chein-Shan Liu Chung-Lun Kuo Chih-Wen Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3189-3208,共20页
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq... To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11). 展开更多
关键词 Laplace equation nonharmonic boundary value problem Ill-posed problem maximal projection optimal shape factor and fictitious radius optimal MQ-RBF optimal polynomial method
下载PDF
Distributed Minimum-Energy Containment Control of Continuous-Time Multi-Agent Systems by Inverse Optimal Control
20
作者 Fei Yan Xiangbiao Liu Tao Feng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1533-1535,共3页
Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we ... Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols. 展开更多
关键词 optimal INFINITY ALGEBRAIC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部