Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, smal...Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.展开更多
In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features refle...In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.展开更多
This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the pr...This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.展开更多
Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of ...Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.展开更多
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,...In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.展开更多
The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standa...The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standard prediction model which can predict the daily evaporation. In this paper, we use subtractive clustering and Fuzzy logic to predict daily evaporation of a particular area. The input data used in the paper are: maximum soil temperature, average soil temperature, average air temperature, minimum relative humidity, average relative humidity and total wind, which are related to the daily evaporation of a particular area as the output. The accuracy of output of the paper is compared with the previous model of Artificial Neural Network (ANN) and we get better result towards the target value. The finding of the paper is applicable in environmental science, geological science and agriculture.展开更多
Fuzzy modeling techniques have been widely used to solve the uncertainty problems. A diagnosis of coronary heart disease (CHD) consists of some parameters numerical value of lingustics data. It can be implemented usin...Fuzzy modeling techniques have been widely used to solve the uncertainty problems. A diagnosis of coronary heart disease (CHD) consists of some parameters numerical value of lingustics data. It can be implemented using fuzzy system through construction of the rules which relate to the data. However, the range of linguistics value is determined by an expert that depends on his knowledge to interpret the problem. Therefore, we propose to generate the rules automatically from the data collection using subtractive clustering and fuzzy inference Tagaki Sugeno Kang orde-1 method. The subtractive clustering method is a clustering algorithm to look for data clusters that serve as the fuzzy rules for diagnosis of CHD risk. The selected cluster number is determined based on the value of variant boundaries. Hence, it is applied to fuzzy inference system method, Takagi Sugeno Kang order-1, which determines diagnnosis of the desease. The advantage of this method is applicable to generate the fuzzy rules without defining and describing from an expert.展开更多
文摘Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period(No.2009BAG13A04)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)the Transportation Science Research Project of Jiangsu Province(No.08X09)
文摘In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.
文摘This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.
文摘Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
基金This research has been partially supported by the national natural science foundation of China (51175169) and the national science and technology support program (2012BAF02B01).
文摘In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.
文摘The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standard prediction model which can predict the daily evaporation. In this paper, we use subtractive clustering and Fuzzy logic to predict daily evaporation of a particular area. The input data used in the paper are: maximum soil temperature, average soil temperature, average air temperature, minimum relative humidity, average relative humidity and total wind, which are related to the daily evaporation of a particular area as the output. The accuracy of output of the paper is compared with the previous model of Artificial Neural Network (ANN) and we get better result towards the target value. The finding of the paper is applicable in environmental science, geological science and agriculture.
文摘Fuzzy modeling techniques have been widely used to solve the uncertainty problems. A diagnosis of coronary heart disease (CHD) consists of some parameters numerical value of lingustics data. It can be implemented using fuzzy system through construction of the rules which relate to the data. However, the range of linguistics value is determined by an expert that depends on his knowledge to interpret the problem. Therefore, we propose to generate the rules automatically from the data collection using subtractive clustering and fuzzy inference Tagaki Sugeno Kang orde-1 method. The subtractive clustering method is a clustering algorithm to look for data clusters that serve as the fuzzy rules for diagnosis of CHD risk. The selected cluster number is determined based on the value of variant boundaries. Hence, it is applied to fuzzy inference system method, Takagi Sugeno Kang order-1, which determines diagnnosis of the desease. The advantage of this method is applicable to generate the fuzzy rules without defining and describing from an expert.