In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
A state-observer based full-state asymptotic trajectory control (OFSTC) method requiring a scalar state is presented to asymptotically drive all the states of chaotic systems to arbitrary desired trajectories. It is...A state-observer based full-state asymptotic trajectory control (OFSTC) method requiring a scalar state is presented to asymptotically drive all the states of chaotic systems to arbitrary desired trajectories. It is no surprise that OFSTC can obtain good tracking performance as desired due to using a state-observer. Significantly OFSTC requires only a scalar state of chaotic systems. A sinusoidal wave and two chaotic variables were taken as illustrative tracking trajectories to validate that using OFSTC can make all the states of a unified chaotic system track the desired trajectories with high tracking accuracy and in a finite time. It is noted that this is the first time that the state-observer of chaotic systems is designed on the basis of Kharitonov's Theorem.展开更多
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS...The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.展开更多
Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is propo...Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is proposed. With this method, by changing the projective synchronization scale factor, one can achieve not only complete synchronization, but also anti-synchronization, as well as arbitrary percentage of projective synchronization, so that the system may attain arbitrary synchronization in a relatively short period of time, which makes this study more meaningful. By numerical simulation, and choosing appropriate scale factor, the results of repeated experiments verify that this method is highly effective and satisfactory. Finally, based on this method and the relevant feedback concept, a novel secure communication project is designed. Numerical simulation verifies that this secure communication project is very valid, and moreover, the experimental result has been greatly improved in decryption time.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a con...The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight...A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil ac...A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.展开更多
There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlik...There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.展开更多
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint...Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.展开更多
In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method...In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method is proposed. The drilling system is described by a lumped parameter model including a Karnopp friction torque model. A state observer is designed to estimate the bit velocity in bottom hole and a state feedback controller is proposed to control the top drive velocity. By simulation, the performance of the control algorithm is demonstrated. Based on the control algorithm, a stick-slip vibration control system is developed. Test results show that the control system can effectively eliminate stick-slip vibrations of the drill-string and can be applied to the drilling field.展开更多
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The...For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.展开更多
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
文摘A state-observer based full-state asymptotic trajectory control (OFSTC) method requiring a scalar state is presented to asymptotically drive all the states of chaotic systems to arbitrary desired trajectories. It is no surprise that OFSTC can obtain good tracking performance as desired due to using a state-observer. Significantly OFSTC requires only a scalar state of chaotic systems. A sinusoidal wave and two chaotic variables were taken as illustrative tracking trajectories to validate that using OFSTC can make all the states of a unified chaotic system track the desired trajectories with high tracking accuracy and in a finite time. It is noted that this is the first time that the state-observer of chaotic systems is designed on the basis of Kharitonov's Theorem.
基金supported partly by the Natural Science Foundation China (70571032).
文摘The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 20080431142)
文摘Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is proposed. With this method, by changing the projective synchronization scale factor, one can achieve not only complete synchronization, but also anti-synchronization, as well as arbitrary percentage of projective synchronization, so that the system may attain arbitrary synchronization in a relatively short period of time, which makes this study more meaningful. By numerical simulation, and choosing appropriate scale factor, the results of repeated experiments verify that this method is highly effective and satisfactory. Finally, based on this method and the relevant feedback concept, a novel secure communication project is designed. Numerical simulation verifies that this secure communication project is very valid, and moreover, the experimental result has been greatly improved in decryption time.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 12122304 and 11973041)in part by the Youth Innovation Promotion Association CAS (No. 2019218)。
文摘The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China(61627810 61790562 61403096)
文摘A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(5170532751805329)+1 种基金Fundamental Research Funds for the Central Universities of China(NS2020065)the Natural Science Foundation of Shanghai(19ZR1453300).
文摘A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.
文摘There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.
基金Thework issupportedby the Key Scienceand Technology Programof Henan Province(Grant No.222102220104)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014)the High Level Talent Foundation of Henan University of Technology(Grant No.2020BS043).
文摘Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.
文摘In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method is proposed. The drilling system is described by a lumped parameter model including a Karnopp friction torque model. A state observer is designed to estimate the bit velocity in bottom hole and a state feedback controller is proposed to control the top drive velocity. By simulation, the performance of the control algorithm is demonstrated. Based on the control algorithm, a stick-slip vibration control system is developed. Test results show that the control system can effectively eliminate stick-slip vibrations of the drill-string and can be applied to the drilling field.
文摘For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.