Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameter...Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.展开更多
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test ...The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.展开更多
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic ...To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.展开更多
The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at t...The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.展开更多
In order to reduce incomplete fermentation caused by high substrate viscosity and low mass transfer efficiency during fermentation process,batch and two-phase anaerobic fermentation experiments were conducted in this ...In order to reduce incomplete fermentation caused by high substrate viscosity and low mass transfer efficiency during fermentation process,batch and two-phase anaerobic fermentation experiments were conducted in this study.Dairy manure was separated by using solid-liquid separator firstly.Separated liquid(SL)and diluted dairy manure(DDM)as raw materials were evaluated in terms of gas production performance for both batch and two-phase anaerobic fermentation.The microorganism population was characterized by scanning electron microscope(SEM)and Denaturing Gradient Gel Electrophoresis(DGGE).The results showed that Volatile Solid(VS)methane yield of SL was 124.51 L/kg VS,which was 2.09 times higher than that of DDM(59.50 L/kg VS)in batch anaerobic fermentation.The Bacteroides and Veillonella with higher activity were the majority microorganism population in acidogenic phase,whereas the Firmicutes and Corynebacterium with methanogenic properties became the predominant microorganism population in methanogenic phase.This study achieved the phase separation and improved the gas production performance.展开更多
In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The r...In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The results showed that two-phase AD achieved an observable enhancement in the methane production under optimal acidification conditions(organic loading rate of 60 g TS/L,the ratio of raw material to inoculum(based on dry weight)of 2:1,the temperature of 45℃,urea concentration of 4%,and time of 6 d).Under these conditions,the daily biogas and biomethane productions were 0.48 L/g TS and 0.30 L/g TS,respectively,which were 26.32%and 57.89%higher than those of the untreated group,respectively.The ammonia nitrogen(AN),alkalinity,and pH value of the methanogenic phase of C4 continued to increase up to 956 mg/L,5680 mg/L,and 7.41,respectively,after 60 d,which might have destroyed the stability of the system.Therefore,for the purpose of reusing the nitrogen source,reducing AN,and maintaining the stability of the reaction system,another set of acidification and two-phase AD with water pretreatment using the discharge of the methanogenic phase of C4 as the inoculum was subsequently conducted.The results showed that the daily biogas productions of single-phase and two-phase AD were 5.26%and 15.79%higher than that of the untreated group,respectively;similarly,their daily methane yields were 10.42%and 21.05%higher than that of the untreated group.展开更多
A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP...A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP) formation. Low concentrations of Ni(II)(5 and10 mg/L) promoted the acid phase, whereas high concentrations(15, 20, and 25 mg/L)exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.展开更多
In order to solve the problems associated with high fiber content,and the ensuing lower biogas volume yield in anaerobic digestion of dairy manure,a study of the co-digestion of separated liquids from dairy manure com...In order to solve the problems associated with high fiber content,and the ensuing lower biogas volume yield in anaerobic digestion of dairy manure,a study of the co-digestion of separated liquids from dairy manure combined with swine manure using a two-phase anaerobic digestion process was conducted.The influence of level of total solids(TS)and hydraulic retention time(HRT)of the mixed liquor on the specific methane production were studied.Three TS levels 8%,10%and 12%were investigated.Analysis of the results show that a maximum specific methane yield of 132.99 L/kg volatile solids(VS),can be obtained with a TS of 9%,an inoculation rate of 30%,the duration of hydrolytic acidification phase of 5 d,and an HRT of the methanogenic phase of 10 d.These findings could provide directions for improving the biogas production by performing the co-digestion of dairy manure with swine manure.展开更多
Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests.In this study...Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests.In this study,the effects of nitrite on hydrolysisacidification,biogas production,volatile solids destruction and microbial composition in semi-continuous two-phase AD of sewage sludge were investigated.The addition of nitrite promotes sludge organic matter solubilization (+484%) and VFAs production (+98.9%),and causes an increase in the VS degradation rate during the AD process (+8.7%).The comparison of biogas production from the acidogenic and methanogenic reactors with or without the addition of nitrite implies that the nitrite has no significant effect on the overall biogas production of two-phase sludge AD process.High-throughput sequencing analysis shows that the microbial communities of bacteria and archaea in two-phase AD reactors significantly changes after the addition of nitrite.Vulcanibacillus (bacteria) and Candidatus Methanofastidiosum (archaea) become the dominant genera in the acidogenic and methanogenic reactors with the nitrite respectively.These findings provide new insights about using nitrite to promote the organic matter degradation of sewage sludge in a semicontinuous two-phase AD system.展开更多
This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acido...This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework...The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mod...Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mode,as an alternative to air cooling for the microprocessors in servers of interest.The need to meet the increased power density of server racks in high-performance DCs,along with the push towards lower global warming potential(GWP)refrigerants due to environmental concerns,has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat.With this regard,a heat pump-assisted absorption chiller(HPAAC)system for recovering waste heat in DCs with an on-chip twophase cooling loop driven by the compressor is proposed in the present paper and the low GWP hydrofluoroolefin refrigerants,including R1224yd(Z),R1233zd(E),R1234yf,R1234ze(E),R1234ze(Z),R1243zf and R1336mzz(Z),are evaluated and compared against R245fa as server coolant.For theHPAAC system,beginning with the development of energy and economic models,the performance is analyzed through both a parametric study and optimization using the coefficient of performance(COP),energy saving ratio(ESR),payback period(PBP)and net present value(NPV)as thermo-economic indicators.Using a standard vapor compression cooling system as a benchmark,the results indicate that with the evaporation temperature between 50℃and 70℃and the subcooling degree ranging from5℃to 15°C,R1233zd(E)with moderate compressor suction pressure and pressure ratio is the best refrigerant for the HPAAC systemwhile R1234yf performs the worst.More importantly,R1233zd(E)is also superior to R245fa based on thermo-economic performance,especially under work conditions with relatively lower evaporation temperature as well as subcooling degree.Under the given working conditions,the overall COP,ESR,NPV,and PBP of R1233zd(E)HPAAC with optimum subcooling degree range from4.99 to 11.27,25.53 to 64.59,1.13 to 4.10×10^(7) CNY and 5.77 to 2.22 years,respectively.Besides,the thermo-economic performance of R1233zd(E)HPAAC under optimum working conditions in terms of subcooling degree varying with the evaporation temperature is also investigated.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
基金Supported by Yunnan S&T Innovation Platform Construction Project(2013DH041)National Natural Science Foundation of China(51366015)Specialized Research Fund for the Doctoral Program of Higher Education of China(20135303110001)~~
文摘Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
基金Sponsored by the National Hi-Tech Research and Development Program of China (Grant No.2003AA601090)Projects of Development Plan of the State Key Fundamental Research of China (Grant No.2004CB4185)
文摘The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.
文摘To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
基金supported by the Major Science and Technology Programs for Water Pollution Control and Management of China(No.2012ZX07205-001)the National Science and Technology Support Program(No.2008BADC4B18)
文摘The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.
基金This study was supported by International Corporation Item(2013DFG62260)Heilongjiang Province Natural Science Fund(E2015023).
文摘In order to reduce incomplete fermentation caused by high substrate viscosity and low mass transfer efficiency during fermentation process,batch and two-phase anaerobic fermentation experiments were conducted in this study.Dairy manure was separated by using solid-liquid separator firstly.Separated liquid(SL)and diluted dairy manure(DDM)as raw materials were evaluated in terms of gas production performance for both batch and two-phase anaerobic fermentation.The microorganism population was characterized by scanning electron microscope(SEM)and Denaturing Gradient Gel Electrophoresis(DGGE).The results showed that Volatile Solid(VS)methane yield of SL was 124.51 L/kg VS,which was 2.09 times higher than that of DDM(59.50 L/kg VS)in batch anaerobic fermentation.The Bacteroides and Veillonella with higher activity were the majority microorganism population in acidogenic phase,whereas the Firmicutes and Corynebacterium with methanogenic properties became the predominant microorganism population in methanogenic phase.This study achieved the phase separation and improved the gas production performance.
基金The authors acknowledge that this work was financially supported by the National Key Technologies R&D Program of China(No.2018YFC1900903).
文摘In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The results showed that two-phase AD achieved an observable enhancement in the methane production under optimal acidification conditions(organic loading rate of 60 g TS/L,the ratio of raw material to inoculum(based on dry weight)of 2:1,the temperature of 45℃,urea concentration of 4%,and time of 6 d).Under these conditions,the daily biogas and biomethane productions were 0.48 L/g TS and 0.30 L/g TS,respectively,which were 26.32%and 57.89%higher than those of the untreated group,respectively.The ammonia nitrogen(AN),alkalinity,and pH value of the methanogenic phase of C4 continued to increase up to 956 mg/L,5680 mg/L,and 7.41,respectively,after 60 d,which might have destroyed the stability of the system.Therefore,for the purpose of reusing the nitrogen source,reducing AN,and maintaining the stability of the reaction system,another set of acidification and two-phase AD with water pretreatment using the discharge of the methanogenic phase of C4 as the inoculum was subsequently conducted.The results showed that the daily biogas productions of single-phase and two-phase AD were 5.26%and 15.79%higher than that of the untreated group,respectively;similarly,their daily methane yields were 10.42%and 21.05%higher than that of the untreated group.
基金supported by the National Natural Science Foundation of China (Nos. 51178215 and 51378251)the Jiangsu Nature Science Fund (No. BK2011032)+2 种基金Open Science Foundation of Jiangsu (No. 50808121)the National Science and Technology Major Project for Water Pollution Control and Treatment (No. 2012ZX07301-005)the 2012 Scientific Research Open Found of Jiangsu Key Laboratory of Environmental Engineering
文摘A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP) formation. Low concentrations of Ni(II)(5 and10 mg/L) promoted the acid phase, whereas high concentrations(15, 20, and 25 mg/L)exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.
基金the National Science and Technology Support Projects of China for the 12th five-year-plan(Grant No.2011BAD15B04).
文摘In order to solve the problems associated with high fiber content,and the ensuing lower biogas volume yield in anaerobic digestion of dairy manure,a study of the co-digestion of separated liquids from dairy manure combined with swine manure using a two-phase anaerobic digestion process was conducted.The influence of level of total solids(TS)and hydraulic retention time(HRT)of the mixed liquor on the specific methane production were studied.Three TS levels 8%,10%and 12%were investigated.Analysis of the results show that a maximum specific methane yield of 132.99 L/kg volatile solids(VS),can be obtained with a TS of 9%,an inoculation rate of 30%,the duration of hydrolytic acidification phase of 5 d,and an HRT of the methanogenic phase of 10 d.These findings could provide directions for improving the biogas production by performing the co-digestion of dairy manure with swine manure.
基金supported by the China Three Gorges Group Co.LTD (No.202003080)the National Key Research and Development Project (Nos.2020YFC1908702,2021YFC_(3)200704)。
文摘Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests.In this study,the effects of nitrite on hydrolysisacidification,biogas production,volatile solids destruction and microbial composition in semi-continuous two-phase AD of sewage sludge were investigated.The addition of nitrite promotes sludge organic matter solubilization (+484%) and VFAs production (+98.9%),and causes an increase in the VS degradation rate during the AD process (+8.7%).The comparison of biogas production from the acidogenic and methanogenic reactors with or without the addition of nitrite implies that the nitrite has no significant effect on the overall biogas production of two-phase sludge AD process.High-throughput sequencing analysis shows that the microbial communities of bacteria and archaea in two-phase AD reactors significantly changes after the addition of nitrite.Vulcanibacillus (bacteria) and Candidatus Methanofastidiosum (archaea) become the dominant genera in the acidogenic and methanogenic reactors with the nitrite respectively.These findings provide new insights about using nitrite to promote the organic matter degradation of sewage sludge in a semicontinuous two-phase AD system.
基金supported and administered by the Singapore National Research Foundation(NRF-CRP5-2009-2)
文摘This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2043 and 52174033)Natural Science Foundation of Sichuan Province(NSFSC)(No.2022NSFSC0971)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance.
文摘The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金supported by the Key Science and Technology Project of China Southern Grid Co.,Ltd.(No.090000KK52220020).
文摘Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mode,as an alternative to air cooling for the microprocessors in servers of interest.The need to meet the increased power density of server racks in high-performance DCs,along with the push towards lower global warming potential(GWP)refrigerants due to environmental concerns,has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat.With this regard,a heat pump-assisted absorption chiller(HPAAC)system for recovering waste heat in DCs with an on-chip twophase cooling loop driven by the compressor is proposed in the present paper and the low GWP hydrofluoroolefin refrigerants,including R1224yd(Z),R1233zd(E),R1234yf,R1234ze(E),R1234ze(Z),R1243zf and R1336mzz(Z),are evaluated and compared against R245fa as server coolant.For theHPAAC system,beginning with the development of energy and economic models,the performance is analyzed through both a parametric study and optimization using the coefficient of performance(COP),energy saving ratio(ESR),payback period(PBP)and net present value(NPV)as thermo-economic indicators.Using a standard vapor compression cooling system as a benchmark,the results indicate that with the evaporation temperature between 50℃and 70℃and the subcooling degree ranging from5℃to 15°C,R1233zd(E)with moderate compressor suction pressure and pressure ratio is the best refrigerant for the HPAAC systemwhile R1234yf performs the worst.More importantly,R1233zd(E)is also superior to R245fa based on thermo-economic performance,especially under work conditions with relatively lower evaporation temperature as well as subcooling degree.Under the given working conditions,the overall COP,ESR,NPV,and PBP of R1233zd(E)HPAAC with optimum subcooling degree range from4.99 to 11.27,25.53 to 64.59,1.13 to 4.10×10^(7) CNY and 5.77 to 2.22 years,respectively.Besides,the thermo-economic performance of R1233zd(E)HPAAC under optimum working conditions in terms of subcooling degree varying with the evaporation temperature is also investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.