Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework...The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.展开更多
Infectious bursal disease(IBD)causes considerable economic losses in the commercial poultry industry worldwide.The principal way to control IBD virus(IBDV),the causative agent of IBD,is still through vaccination progr...Infectious bursal disease(IBD)causes considerable economic losses in the commercial poultry industry worldwide.The principal way to control IBD virus(IBDV),the causative agent of IBD,is still through vaccination programs.Virus-like particles(VLPs)are recognised as a safe and potent recombinant vaccine platform.This research work explores the characterisation and separation of infectious bursal disease virus-like particles(IBD-VLPs)from crude feedstock.Various characteristics were studied with highperformance size-exclusion chromatography(HP-SEC),sodium dodecyl sulphate–polyacrylamide gel electrophoresis(SDS-PAGE)and transmission electron microscopy(TEM)analyses.Subsequently,the separation of IBD-VLPs using polyethylene glycol(PEG)/sodium citrate-based aqueous two-phase systems(ATPSs)was conducted and optimised.Moreover,a scale-up study of the best ATPS constituted of 15%PEG 6000,11%sodium citrate and 10%crude feedstock was performed to compare the separation performance of IBD-VLPs with and without centrifugation-assisted.The results indicated that the optimised ATPS with centrifugation-assisted for both 5 g and 50 g systems showed good recovery of IBDVLPs of>97%in the interphase between the PEG-rich top and salt-rich bottom phases.These optimised systems also showed high removal efficiencies of impurities of>95%.The results demonstrated that aqueous two-phase extraction could be a promising technology for efficient VLPs separation.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extract...[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that ...Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.展开更多
This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems...This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.展开更多
Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region,affording unique confined space for membrane assembly.Here,for the first time,an aqueous two-phase interfacial assembly ...Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region,affording unique confined space for membrane assembly.Here,for the first time,an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework(COF)membranes.The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases.By respectively distributing aldehyde and amine monomers into two aqueous phases,a series of COF membranes are fabricated at water-water interface.The resultant membranes exhibit high NaCl rejection of 93.0-93.6% and water permeance reaching 1.7-3.7 L m^(−2) h^(−1) bar^(−1),superior to most water desalination membranes.Interestingly,the interfacial tension is found to have pronounced effect on membrane structures.The appropriate interfacial tension range(0.1-1.0 mN m^(−1))leads to the tight and intact COF membranes.Furthermore,the method is extended to the fabrication of other COF and metal-organic polymer membranes.This work is the first exploitation of fabricating membranes in all-aqueous system,confering a green and generic method for advanced membrane manufacturing.展开更多
The isothermal solubility data of aqueous two-phase system ethanol+water+K 2HPO 4 were determined with the turbidity titration method at 303.2 K. The binodal curves were described by using the Mistry equation very w...The isothermal solubility data of aqueous two-phase system ethanol+water+K 2HPO 4 were determined with the turbidity titration method at 303.2 K. The binodal curves were described by using the Mistry equation very well. An experimental procedure for measuring the liquid-liquid equilibrium data of the aqueous two-phase system was proposed, in which the concentrations of the coexisting phases were determined with the corresponding densities of the solution. The tie lines were satisfactorily described by using the Othmer-Tobias and Bancroft equations.展开更多
One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the pre...One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.展开更多
A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated s...A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.展开更多
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ...Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.展开更多
A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named ...A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.展开更多
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2043 and 52174033)Natural Science Foundation of Sichuan Province(NSFSC)(No.2022NSFSC0971)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance.
文摘The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.
基金Zhejiang University and TalentIntroduction Program of China for Postdoctoral Researcher for the financial supportfinancially supported by the National Key Research&Development Program of China (2021YFE0113300)the National Natural Science Foundation of China (22078286)。
文摘Infectious bursal disease(IBD)causes considerable economic losses in the commercial poultry industry worldwide.The principal way to control IBD virus(IBDV),the causative agent of IBD,is still through vaccination programs.Virus-like particles(VLPs)are recognised as a safe and potent recombinant vaccine platform.This research work explores the characterisation and separation of infectious bursal disease virus-like particles(IBD-VLPs)from crude feedstock.Various characteristics were studied with highperformance size-exclusion chromatography(HP-SEC),sodium dodecyl sulphate–polyacrylamide gel electrophoresis(SDS-PAGE)and transmission electron microscopy(TEM)analyses.Subsequently,the separation of IBD-VLPs using polyethylene glycol(PEG)/sodium citrate-based aqueous two-phase systems(ATPSs)was conducted and optimised.Moreover,a scale-up study of the best ATPS constituted of 15%PEG 6000,11%sodium citrate and 10%crude feedstock was performed to compare the separation performance of IBD-VLPs with and without centrifugation-assisted.The results indicated that the optimised ATPS with centrifugation-assisted for both 5 g and 50 g systems showed good recovery of IBDVLPs of>97%in the interphase between the PEG-rich top and salt-rich bottom phases.These optimised systems also showed high removal efficiencies of impurities of>95%.The results demonstrated that aqueous two-phase extraction could be a promising technology for efficient VLPs separation.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
基金Supported by the Fundamental Research Funds for the Central Universities(JUSRP11205)
文摘Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.
基金Project (No. 20276064) supported by the National Natural ScienceFoundation of China
文摘This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.
基金The authors gratefully acknowledge financial support from National Key Research and Development Program of China(Nos.2021YFC2101200 and 2021YFB3802200)National Natural Science Foundation of China(Nos.22178251,21878216,91934302,21838008 and 21878215)+1 种基金Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Haihe Laboratory of Sustainable Chemical Transformations.
文摘Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region,affording unique confined space for membrane assembly.Here,for the first time,an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework(COF)membranes.The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases.By respectively distributing aldehyde and amine monomers into two aqueous phases,a series of COF membranes are fabricated at water-water interface.The resultant membranes exhibit high NaCl rejection of 93.0-93.6% and water permeance reaching 1.7-3.7 L m^(−2) h^(−1) bar^(−1),superior to most water desalination membranes.Interestingly,the interfacial tension is found to have pronounced effect on membrane structures.The appropriate interfacial tension range(0.1-1.0 mN m^(−1))leads to the tight and intact COF membranes.Furthermore,the method is extended to the fabrication of other COF and metal-organic polymer membranes.This work is the first exploitation of fabricating membranes in all-aqueous system,confering a green and generic method for advanced membrane manufacturing.
基金Supported by Naturd Science Foundation of Fujian Province(No. E0 2 10 0 2 2 ),Japan Science and Technology Corpora-tion(JST)
文摘The isothermal solubility data of aqueous two-phase system ethanol+water+K 2HPO 4 were determined with the turbidity titration method at 303.2 K. The binodal curves were described by using the Mistry equation very well. An experimental procedure for measuring the liquid-liquid equilibrium data of the aqueous two-phase system was proposed, in which the concentrations of the coexisting phases were determined with the corresponding densities of the solution. The tie lines were satisfactorily described by using the Othmer-Tobias and Bancroft equations.
基金Supported by the National High Technology Research and Development Program of China(2009AA02Z206,2006AA02Z239)the National Basic Research Program of China(2007CB707805)the Ministry of Science and Technology,China
文摘One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.
基金This study was jointly supported by the National Natural Science Foundation of China(20275003 and 20335010).
文摘A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.
文摘Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.
基金Supported by the National Natural Science Foundation of China(No.295256O9 and 29736180).
文摘A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.