Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle ...Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
For two-phase polymer blend systems, the phase inversion will take place as the blendcomposition is changed. In this paper a mechanical model has been proposed to describe themodulus-composition relation in the phase ...For two-phase polymer blend systems, the phase inversion will take place as the blendcomposition is changed. In this paper a mechanical model has been proposed to describe themodulus-composition relation in the phase inversion region. The application of the mechanicalmodel to two polyurethane blend systems has been studied. It was found that the theoreticalprediction for the modulus-composition relation is quite consistent with the experimentalresults. Furthermore, the characteristics of the phase inversion can be determined uniquelyby the parameters involved in the mechanical model.展开更多
The dynamic viscoelastic response of the two-phase polymer blend systems shows the characteristics of the thermorheologically complex materials. In this paper theoretical equations for describing the dynamic viscoelas...The dynamic viscoelastic response of the two-phase polymer blend systems shows the characteristics of the thermorheologically complex materials. In this paper theoretical equations for describing the dynamic viscoelastic response of such polymer blend systems have been established by means of the mechanical modeling technique. The dynamic viscoelastic response of the blend systems at any blend composition can be predicted theoretically by using the equations established, provided that the dynamic viscoelastic response of the two pure components and the mechanical model parameters are known in advance. Thus, we provide an effective method for studying the dynamic mechanical properties and the molecular relaxation characteristics of the two-phase polymer blend systems.展开更多
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio...The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.展开更多
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes...Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.展开更多
A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors ...A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for...The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee...Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.展开更多
基金The project is supported by the National Natural Science Foundation of China
文摘Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金Project supported by the National Natural Science Foundation of China.
文摘For two-phase polymer blend systems, the phase inversion will take place as the blendcomposition is changed. In this paper a mechanical model has been proposed to describe themodulus-composition relation in the phase inversion region. The application of the mechanicalmodel to two polyurethane blend systems has been studied. It was found that the theoreticalprediction for the modulus-composition relation is quite consistent with the experimentalresults. Furthermore, the characteristics of the phase inversion can be determined uniquelyby the parameters involved in the mechanical model.
基金Project supported by the Natural Science Foundation of Academia Sinica.
文摘The dynamic viscoelastic response of the two-phase polymer blend systems shows the characteristics of the thermorheologically complex materials. In this paper theoretical equations for describing the dynamic viscoelastic response of such polymer blend systems have been established by means of the mechanical modeling technique. The dynamic viscoelastic response of the blend systems at any blend composition can be predicted theoretically by using the equations established, provided that the dynamic viscoelastic response of the two pure components and the mechanical model parameters are known in advance. Thus, we provide an effective method for studying the dynamic mechanical properties and the molecular relaxation characteristics of the two-phase polymer blend systems.
基金Supported by the National Natural Science Foundation of China(52104049)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004)。
文摘The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.
基金supported by the Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT)under the Ministry of Trade,Industry and Energy (MOTIE)of Republic of Korea (20012121)by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MSIT) (2022M3J7A106294)。
文摘Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.
基金Supported by the National Natural Science Foundation of China (No. 29873014) and the Key Disciplinary Foundation of Shanghai.
文摘A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
基金supported by the Natural Science Foundation of Qinghai Province(Grant No.2024-ZJ-987).
文摘The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金the National Natural Science Foundation of China(No.51973080,92066104).
文摘Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.