Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework...The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ...Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.展开更多
The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowba...The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data.展开更多
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n...A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.展开更多
A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells....A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.The gas diff usion layer(GDL)and microporous layer(MPL)are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved,and the catalyst layer is simplifi ed as a superthin layer to address the electrochemical reaction,which provides a clear description of the fl ooding eff ect on mass transport and performance.Diff erent kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and per-formance under the fl ooding condition.The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under fl ooding.The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores.Moreover,the MPL helps in the uniform distribution of oxygen for an effi cient in-plane transport capacity.Crack and perforation structures can accelerate the water transport in the assembly.The systematic perforation design yields the best performance under fl ooding by separating the transport of liquid water and oxygen.展开更多
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz...The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.展开更多
The knowledge of two-phase cloud dispersion mechanism from HLG(hazardous liquefied gas) release is the prerequisite for accurate assessment and precise rescue of such accidents. In this paper, an experiment of two-pha...The knowledge of two-phase cloud dispersion mechanism from HLG(hazardous liquefied gas) release is the prerequisite for accurate assessment and precise rescue of such accidents. In this paper, an experiment of two-phase cloud dispersion from liquefied CO_(2) hole release is performed. The source terms, such as vapour mass fraction, release velocity and mean droplet diameter, are calculated based on thermodynamic theory. Taking phase transition of CO_(2) droplets to gas into account, CFD(computational fluid dynamics) model for two-phase cloud dispersion is established. The predicted cloud temperatures at the downstream agree well with the experimental data, with the maximum relative error of 5.8% and average relative error of 2.3%. The consequence distances in the downstream direction and in the crosswise direction calculated through two-phase model are larger than those through single-phase model,with the relative differences of 57.8% and 53.6% respectively. CO_(2) concentration calculated by twophase model is smaller in the vicinity of release hole, and larger beyond 0.135 m downstream. A smaller leakage rate results in a lower CO_(2) concentration and a higher cloud temperature.展开更多
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o...In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su...A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel.展开更多
An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid...An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.展开更多
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2043 and 52174033)Natural Science Foundation of Sichuan Province(NSFSC)(No.2022NSFSC0971)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance.
文摘The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
文摘Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.
基金This research is supported by National Natural Science Foundation of China(No.52204057)the Science Foundation of China University of Petroleum,Beijing(No.2462021BJRC003 and 2462021YJRC012).
文摘The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data.
文摘A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.
基金by the National Natural Science Foundation of China(No.51976138)National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A10).
文摘A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.The gas diff usion layer(GDL)and microporous layer(MPL)are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved,and the catalyst layer is simplifi ed as a superthin layer to address the electrochemical reaction,which provides a clear description of the fl ooding eff ect on mass transport and performance.Diff erent kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and per-formance under the fl ooding condition.The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under fl ooding.The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores.Moreover,the MPL helps in the uniform distribution of oxygen for an effi cient in-plane transport capacity.Crack and perforation structures can accelerate the water transport in the assembly.The systematic perforation design yields the best performance under fl ooding by separating the transport of liquid water and oxygen.
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22–02).
文摘The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
基金supported by the Natural Science Foundation of Shandong Province (ZR2021QB144)。
文摘The knowledge of two-phase cloud dispersion mechanism from HLG(hazardous liquefied gas) release is the prerequisite for accurate assessment and precise rescue of such accidents. In this paper, an experiment of two-phase cloud dispersion from liquefied CO_(2) hole release is performed. The source terms, such as vapour mass fraction, release velocity and mean droplet diameter, are calculated based on thermodynamic theory. Taking phase transition of CO_(2) droplets to gas into account, CFD(computational fluid dynamics) model for two-phase cloud dispersion is established. The predicted cloud temperatures at the downstream agree well with the experimental data, with the maximum relative error of 5.8% and average relative error of 2.3%. The consequence distances in the downstream direction and in the crosswise direction calculated through two-phase model are larger than those through single-phase model,with the relative differences of 57.8% and 53.6% respectively. CO_(2) concentration calculated by twophase model is smaller in the vicinity of release hole, and larger beyond 0.135 m downstream. A smaller leakage rate results in a lower CO_(2) concentration and a higher cloud temperature.
基金the National Natural Science Foundation of China (21776180, 22108177)the open project of the Key Laboratory of Fine Chemical Application Technology of Luzhou (HYJH-2102-A)。
文摘In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51775077)。
文摘A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.