期刊文献+
共找到12,589篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of coordination between α and β phases for two-phase titanium alloy during hot working 被引量:13
1
作者 Jian-wei XU Wei-dong ZENG +2 位作者 Da-di ZHOU Sheng-tong HE Run-chen JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3428-3438,共11页
The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that ... The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that the ability of coordinated deformation betweenαandβphases can influence uniformity of microstructure evolution.Specifically,αphase maintains the lamellar structure andβphase has a low degree of recrystallization when the ability of coordinated deformation is good.In this case,αandβphases still maintain the BOR(Burgers orientation relationship),and their interface relationship is not destroyed even at large deformation.Both of the deformation extent ofαlamellae and recrystallization degree ofβphase increase with the decline of ability of coordinated deformation.Theαphase only maintains the BOR withβphase on one side,while the uncoordinated rotation with theβphase on the other side occurs within 10°.Theαandβphases rotate asynchronously when ability of coordinated deformation is poor.The degree of interface dislocation increases,andαandβphases deviate from the BOR. 展开更多
关键词 coordination ability titanium alloy orientation relationship globularization RECRYSTALLIZATION
下载PDF
Morphology transformation of primary strip α phase in hot working of two-phase titanium alloy 被引量:4
2
作者 Xiao-guang FAN He YANG +3 位作者 Peng-fei GAO Rui ZUO Peng-hui LEI Zhe JI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1294-1305,共12页
Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the ... Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα. 展开更多
关键词 titanium alloy primary α strips globularization morphology transformation hot working COARSENING
下载PDF
Microstructure of a two-phase titanium alloy by rapid solidification technique
3
作者 刘星星 龙玲 +2 位作者 严彪 唐人剑 邹洪流 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期486-489,共4页
Ribbons of the two-phase titanium alloy were fabricated by single-roller rapid solidification technique,and aged at high temperature. The microstructure of ribbon samples were characterized with X-ray diffractometer(X... Ribbons of the two-phase titanium alloy were fabricated by single-roller rapid solidification technique,and aged at high temperature. The microstructure of ribbon samples were characterized with X-ray diffractometer(XRD) and environmental scanning electron microscope(ESEM). The microstructures of the alloy are composed of α phase and supersaturated β phase,and X-ray diffraction results show that all peaks of the α and β phases shift slightly to smaller angles,which can be explained by the disordering growth pattern caused by the rapid solidification process. After aging at 960 ℃ in vacuum,the ribbon is composed of homogeneous α phase and β phase. 展开更多
关键词 凝固技术 钛合金 相转移模式 物理性能
下载PDF
Deformation banding in β working of two-phase TA15 titanium alloy 被引量:3
4
作者 Xiao-guang FAN Xiang ZENG +4 位作者 He YANG Peng-fei GAO Miao MENG Rui ZUO Peng-hui LEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2390-2399,共10页
To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM... To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings. 展开更多
关键词 TA15 titanium alloy β working deformation banding grain refinement dynamic recrystallization
下载PDF
Phase fraction evolution in hot working of a two-phase titanium alloy: experiment and modeling 被引量:1
5
作者 Xiao-Guang Fan Huo-Jun Zheng +2 位作者 Peng-Fei Gao Mei Zhan Wen-Jia Mei 《Rare Metals》 SCIE EI CAS CSCD 2017年第10期769-779,共11页
In the present work, the coupled effects of initial structure and processing parameters on microstructure of a two-phase titanium alloy were investigated to predict the microstructural evolution in multiple hot workin... In the present work, the coupled effects of initial structure and processing parameters on microstructure of a two-phase titanium alloy were investigated to predict the microstructural evolution in multiple hot working. It is found that microstructure with different constituent phases can be obtained by regulating the initial structure and hot working conditions. The variation of deformation degree and cooling rate can change the morphology of the con- stituent phases, but do not alter the phase fraction. The phase transformation during heating and holding determi- nes the phase fraction for a certain initial structure. ^--at-~3 transformation occurs during heating and holding. [3 to ct transformation leads to a significant increase in content and size of lamellar ~. The ct to [3 transformation occurs simultaneously in equiaxed at and lamellar ct. The thickness of lamellar ~t increases with temperature, which is caused by the vanishing of fine a lamellae due to phase transformation and coarsening by termination migration. By assuming a quasi-equilibrium phase transformation in heating and holding, a modeling approach is proposed for predicting microstructural evolution. The three stages of phase transformation are modeled separately and combined to predict the variation of phase fraction with temperature. Model predictions agree well with the experimental results. 展开更多
关键词 Titanium alloy Hot working MICROSTRUCTURE MODELING
原文传递
The mechanism of flow softening in subtransus hot working of two-phase titanium alloy with equiaxed structure 被引量:3
6
作者 Xiaoguang Fan He Yang Pengfei Gao 《Chinese Science Bulletin》 SCIE EI CAS 2014年第23期2859-2867,共9页
Understanding the mechanism of high temperature deformation is important for controlling the forming quality of the titanium alloy forgings.In the present work,the flow softening mechanism in subtransus deformation of... Understanding the mechanism of high temperature deformation is important for controlling the forming quality of the titanium alloy forgings.In the present work,the flow softening mechanism in subtransus deformation of titanium alloys with equiaxed structure was investigated by interrupted isothermal compression tests.The results show that limited strain hardening followed by continuous flow softening occurs in high temperature deformation of a twophase TA15 titanium alloy.The flow softening can not be rationalized by dynamic recrystallization.Instead,the increase of mobile dislocations during deformation is an important reason for flow softening.The grain boundaries(including the a-b interfaces)act as an important source for the generation of mobile dislocations.The continuous flow softening results from the significant deformation heterogeneity in subtransus working. 展开更多
关键词 连续流动 两相钛合金 软化 机制 结构 热加工 TA15钛合金 高温变形
原文传递
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
7
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
下载PDF
Recent innovations in laser additive manufacturing of titanium alloys 被引量:1
8
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
9
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO_(3) solution 被引量:1
10
作者 Jia Liu Shuanglu Duan +1 位作者 Xiaokang Yue Ningsong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期750-763,共14页
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici... The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed. 展开更多
关键词 electrochemical machining dissolution behavior β-CEZ titanium alloy polarization curve current efficiency
下载PDF
OXIDATION OF A TWO-PHASE Cu-75Cr ALLOY IN AIRAT 700-900℃ 被引量:21
11
作者 F. Gesmundo Y Niu F. Vianiand D.L. Douglass(Universita di Genova, Fiera del Mare, Pad. D,16129 Genova, Italy)(State Key Lab. for Corrosion and Protection, Institute of Corrosion and Protection of Metals, theChinese Academy of Sciences, Shenyang 110015, Ch 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第4期333-341,共9页
The cormsion in air of a two-phase Cu-75Cr alloy was studied at 700-900℃. Thealloy cormded nearly parabolically at 700-800℃, but at 900℃ its instantaneousparabolic mte constant decreased with time. The scales were ... The cormsion in air of a two-phase Cu-75Cr alloy was studied at 700-900℃. Thealloy cormded nearly parabolically at 700-800℃, but at 900℃ its instantaneousparabolic mte constant decreased with time. The scales were complex and consistedof an outermost layer of copper oxide generally followed bg a layer of the double ox-ide Cu2 Cr2 O4 sometimes containing particles of unoxidized chromium surmunded bya chromia layer. An innermost layer of chromia was also observed in some cases.Finally metallic copper was al8o frequently mixed with chromia particles. No Cr de-pletion was observed in the alloy close to the inteffoce with the scale. In any case,this alloy was not able to form an exclusive continuous protective chromia layer. Thespecial cormsion behavior Of this alloy is typical of two-phase binary systems with alange solubility gaP in which the outwaof dthesion fiux of the most-reactive componentin the alloy is strongly reduced and may be inswncient to fOrm a protective externallayer of the cormsponding oxide. In paTticular, the presence of particles of Cr withina double oxide layer is very unusual and is allowed only for the kinetic reason. 展开更多
关键词 copper-chromium ALLOY TWO-PHASE OXIDATION
下载PDF
Preparation and Properties of Cu-Containing High-entropy Alloy Nitride Films by Magnetron Sputtering on Titanium Alloy
12
作者 DENG Wanrong YANG Wei +5 位作者 YU Sen LAN Nan MA Xiqun WANG Liqun GAO Wei CHEN Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1586-1594,共9页
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com... Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field. 展开更多
关键词 titanium alloy high-entropy alloy nitride film magnetron sputtering properties
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
13
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating Titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
A review on advances of high-throughput experimental technology for titanium alloys
14
作者 Ke-chao ZHOU Xiu-ye YANG +3 位作者 Yi-xin AN Jun-yang HE Bing-feng WANG Xiao-yong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3425-3451,共27页
Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan... Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed. 展开更多
关键词 titanium alloys HIGH-THROUGHPUT microstructure mechanical properties
下载PDF
Hot Deformation Behavior of Ti-6Al-4V-0.5Ni-0.5Nb Titanium Alloy
15
作者 ZHU Guochuan LIU Qiang +6 位作者 SONG Shengyin HUI Songxiao YU Yang YE Wenjun QI Jun TANG Zhengwei XU Penghai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1270-1277,共8页
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The... Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1). 展开更多
关键词 titanium alloy hot deformation processing map dynamic recrystallization
下载PDF
Phase transformation in titanium alloys:A review
16
作者 Chang-chang LIU Yang-huan-zi LI +1 位作者 Ji GU Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3093-3117,共25页
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ... Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed. 展开更多
关键词 titanium alloys phase transformation microstructural evolution mechanical properties
下载PDF
A new rhombohedral phase and its 48 variants inβtitanium alloy
17
作者 Xin-nan WANG Ming HAN +2 位作者 Fu-rong ZHANG Guang-ming ZHAO Zhi-shou ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2849-2863,共15页
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst... A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys. 展开更多
关键词 titanium alloy rhombohedral phase Bravais lattice reconstruction VARIANT orientation relationship
下载PDF
Role of activation energies of individual phases in two-phase range on constitutive equation of Zr-2.5Nb-0.5Cu alloy 被引量:2
18
作者 K.K.SAXENA S.K.JHA +4 位作者 V.PANCHOLI G.P.CHAUDHARI D.SRIVASTAVA G.K.DEY N.SAIBABA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期172-183,共12页
Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on... Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy in the temperature range of 700-925 ℃ and strain rate range of 10-2-10 s-l, Flow stress data of the single phase were extrapolated in the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated using calculated flow stress data in the two-phase range, Comparison of activation energies revealed that a phase is the dominant phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental results in terms of correlation coefficient (R) and average absolute relative error (AARE). 展开更多
关键词 Zr-2.5Nb-0.5Cu alloy hot deformation activation energy constitutive equation two-phase material
下载PDF
Role of processing parameters on relative density,microstructure and mechanical properties of selective laser melted titanium alloy
19
作者 Tian-yu Liu Bo-liang Liu +4 位作者 Jiao-jiao Cheng Shi-bing Liu Kun Shi Hong-yu Liu Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第6期676-684,共9页
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A... The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts. 展开更多
关键词 selective laser melting processing parameter Ti-6Al-2Zr-1Mo-1V titanium alloy relative density MICROSTRUCTURE mechanical properties
下载PDF
Mechanism and Kinetics of Phase Transformation in Two-phase TiAl-based Alloys 被引量:2
20
作者 Shiming HAO+ and Wen tao WU(Dept. of Mater. Sci., Northeastern University, Shenyang, 110006, China)Chuanxi HAN(Northwest Institute for Nonferrous Metal Research, Bao ji, 721014, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期170-174,共5页
The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa... The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed 展开更多
关键词 TIAL Mechanism and Kinetics of Phase Transformation in Two-phase TiAl-based Alloys
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部