Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl...Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.展开更多
The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intens...The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intensity of 6.0×10^10W/cm^2, PADs exhibit dramatic change with the external field wavelength. Comparison between the experimental observation and the lowest-order perturbation theory prediction indicates that the pattern of PADs can be explained by the interference of the s and d partial waves in the final state. Relative contri- butions of s and d partial waves in the two-photon detachment at different laser wavelengths are obtained.展开更多
By observing two-photon response and anisotropy of the light-induced voltage in Al-Si Schottky barrier potential,it is certified from the experimental and theoretical analysis that the built-in electric field generate...By observing two-photon response and anisotropy of the light-induced voltage in Al-Si Schottky barrier potential,it is certified from the experimental and theoretical analysis that the built-in electric field generated by the Schottky barrier potential will induce the phenomena of optical rectification in Si photodiode.Thus,it is deduced that there must be double-frequency absorption caused by phase-mismatch in the mechanism of two-photon response of Si photodiode.If the intensity of the built-in electric field is strong enough,the double-frequency absorption will be the main factor of the two-photon response,which is different from the conventional opinion that the two-photon response is just the two-photon absorption.展开更多
The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical res...The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.展开更多
The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ...The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.展开更多
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low e...A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.展开更多
Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit s...Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit strong single-photon excited fluorescence (SPEF) and two-photon excited fluorescence (TPEF) with the emission peaks around ~560 nm and with the lifetime of ~1ns.展开更多
Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement...Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.展开更多
In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A...In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.展开更多
We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-p...We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.展开更多
The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on me...The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on methods of triggering the transition between the ground state and isomeric state,among which the electronic bridge(EB)is one of the most efficient.In this paper,we propose a new electronic bridge mechanism via two-photon excitation based on quantum optics for a two-level nuclear quantum system.The long-lived 7 s1/2 electronic shell state of^(229m)Th^(3+),with a lifetime of approximately 0.6 s,is chosen as the initial state and the atomic shells(7 s-10 s)could be achieved as virtual states in a two-photon process.When the virtual states return to the initial state 7 s1/2,there is a chance of triggering the nucleus 229Th^(3+),to its isomeric state ^(229m)Th ^(3+),via EB.Two lasers at moderate intensity((10^(10)-10^(14))W/m^(2)),with photon energies near the optical range,are expected to populate the isomer at a saturated rate of approximately 10^(9) s^(-1),which is much higher than that due to other mechanisms.We believe that this twophoton EB scheme can help in the development of nuclear clocks and deserves verification via a series of experiments with ordinary lasers in laboratories.展开更多
A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], ...A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], which is based on Jaynes-Cummings model in QED and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In our scheme, the two-photon interaction Jaynes-Cummings model is used to realize the approximate and conditional teleportation. Our scheme does not involve the Bell-state measurement and an additional atom, only requiring two atoms and one single-mode cavity. The fidelity of the scheme is higher than that of Ref. [11]. The scheme may be generalized to not only the teleportation of the state of a cavity mode to another mode by means of a single atom but also the teleportation of the state of a trapped ion.展开更多
Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuores...Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuorescence lifetime imaging microscopy(TP-FLIM)allows non-invasive,label free,three-dimensional,high-resolution imaging of living tisues with not only histological but also biochemical characterization ability in both qualitative and quantitative way.Benefiting from these advantages,this technology is protmising for clinical diagnosis of digestive tract tumors.In recent years,many efforts have'been made in this field and some remarkable progress has been achieved.In this paper,we overview the recent progress of TP-FLIM-based researches on digestive tract tumor detection.Among them,our latest results on the gastric cancer and esophageal cancer are elaborately depicted.Finally,we outlook and discuss the potential advantages and challenges of TP-FLIM in future clinical applications.展开更多
An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The stru...An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The structure of the compound was solved by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, with a = 9.753(5), b = 8.815(5), c = 25.554(5) ?, β = 96.315(5)°, V = 2184(2) ?~3, Z = 2, D_c = 1.136 g/m^3, F(000) = 792, Μr = 746.92, μ = 0.069 mm^(-1), the final R = 0.0658 and wR = 0.1730 for 6790 observed reflections with I > 2(I). Study of nonlinear optical properties shows that the compound exhibits excellent two-photon excited fluorescence with the two-photon absorption cross-section value of 116 GM. The structure-property relationship was researched in detail through X-ray crystallography and quantum chemical calculation. Result of living cell imaging experiment shows its potential in fluorescence microscopy bioimaging.展开更多
Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and re...Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and redox processes.Nicotinamide adenine dinucleotide(NAD(P)H)is the primary producer of energy in mitochondria,changing NAD(P)H can directly reflect the physiological state of mitochondria.Therefore,NAD(P)H can be used to evaluate metabolic response.In this paper,we propose a noninvasive detection method that uses two-photon fluorescence lifetime imaging microscopy(TP-FLIM)to characterize apoptosis by observing the binding kinetics of cellular endogenous NAD(P)H.The result shows that the average fluorescence lifetime of NAD(P)H and the fluorescence lifetime of protein-bound NAD(P)H will be affected by the changing pH,serum content,and oxygen concentration in the cell culture environment,and by the treatment with reagents such as H2O2 and paclitaxel.Taxol(PTX).This noninvasive detection method realized the dynamic detection of cellular endogenous substances and the assessment of apoptosis.展开更多
We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the c...We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The, dynamic equations of such a system are derived by using the technique of quantum Laugevin opera.tots, and then arre studied numerically under different driving" conditions, The results show that trader certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic populations, atomic coherences, and injected classical field, stable and bistable states. Chaos can be inhibited by atomic In ,addition, no chaos occurs in optical bista.bility.展开更多
Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time ev...Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.展开更多
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金The National Natural Science Foundation of China(No.60678042)the Natural Science Foundation of Jiangsu Province(No.BK2006553)the Pre-Research Project of the National Natural Science Foundation supported by Southeast University(No.9207041399)
文摘Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21073188).
文摘The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intensity of 6.0×10^10W/cm^2, PADs exhibit dramatic change with the external field wavelength. Comparison between the experimental observation and the lowest-order perturbation theory prediction indicates that the pattern of PADs can be explained by the interference of the s and d partial waves in the final state. Relative contri- butions of s and d partial waves in the two-photon detachment at different laser wavelengths are obtained.
文摘By observing two-photon response and anisotropy of the light-induced voltage in Al-Si Schottky barrier potential,it is certified from the experimental and theoretical analysis that the built-in electric field generated by the Schottky barrier potential will induce the phenomena of optical rectification in Si photodiode.Thus,it is deduced that there must be double-frequency absorption caused by phase-mismatch in the mechanism of two-photon response of Si photodiode.If the intensity of the built-in electric field is strong enough,the double-frequency absorption will be the main factor of the two-photon response,which is different from the conventional opinion that the two-photon response is just the two-photon absorption.
文摘The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.
文摘The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.
文摘A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.
基金This work is supported by the National Natural Science Foundation of China(No.20172034)grant for State Key Program of China.
文摘Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit strong single-photon excited fluorescence (SPEF) and two-photon excited fluorescence (TPEF) with the emission peaks around ~560 nm and with the lifetime of ~1ns.
文摘Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 1097602/A06)
文摘In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.
文摘We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the Strategic Priority Research Program of the CAS(No.XDB34030000)。
文摘The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on methods of triggering the transition between the ground state and isomeric state,among which the electronic bridge(EB)is one of the most efficient.In this paper,we propose a new electronic bridge mechanism via two-photon excitation based on quantum optics for a two-level nuclear quantum system.The long-lived 7 s1/2 electronic shell state of^(229m)Th^(3+),with a lifetime of approximately 0.6 s,is chosen as the initial state and the atomic shells(7 s-10 s)could be achieved as virtual states in a two-photon process.When the virtual states return to the initial state 7 s1/2,there is a chance of triggering the nucleus 229Th^(3+),to its isomeric state ^(229m)Th ^(3+),via EB.Two lasers at moderate intensity((10^(10)-10^(14))W/m^(2)),with photon energies near the optical range,are expected to populate the isomer at a saturated rate of approximately 10^(9) s^(-1),which is much higher than that due to other mechanisms.We believe that this twophoton EB scheme can help in the development of nuclear clocks and deserves verification via a series of experiments with ordinary lasers in laboratories.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10274093 and 10474118, the National Fundamental Research Program under Grant No. 2001CB309309, the Natural Science Foundatioa of Hunan Province of China, the Science Research Fund of Educational Department of Hunan Province of China, the Science Research Fund of Hunan Institute of Humanity and Science and Technology under Grant No. 2005A008, and the Foundation for Youth Core-Teachers of Hunan Province under Grant No. 2003165
文摘A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], which is based on Jaynes-Cummings model in QED and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In our scheme, the two-photon interaction Jaynes-Cummings model is used to realize the approximate and conditional teleportation. Our scheme does not involve the Bell-state measurement and an additional atom, only requiring two atoms and one single-mode cavity. The fidelity of the scheme is higher than that of Ref. [11]. The scheme may be generalized to not only the teleportation of the state of a cavity mode to another mode by means of a single atom but also the teleportation of the state of a trapped ion.
基金supports from the National Key Research and Development Program of China(2017YFC0110200)Program 973(2015CB755502)+4 种基金the National Natural Science Foundation of China(NSFC)(81571724,81701744,81822023)the Natural Science Foundation of Guangdong Province(2014A030312006,2017A 030310308)the Scientific Instrument Innovation Team of Chinese Academy of Sciences(GJJSTD 20180002)the Shenzhen Science and Technology Program(JCYJ20170818164343304,JCYJ20170818155006471,JCYJ20160608214524052,JCYJ20180507182432303)the SIAT Innovation Program for Excellent Young Researchers(201821).
文摘Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuorescence lifetime imaging microscopy(TP-FLIM)allows non-invasive,label free,three-dimensional,high-resolution imaging of living tisues with not only histological but also biochemical characterization ability in both qualitative and quantitative way.Benefiting from these advantages,this technology is protmising for clinical diagnosis of digestive tract tumors.In recent years,many efforts have'been made in this field and some remarkable progress has been achieved.In this paper,we overview the recent progress of TP-FLIM-based researches on digestive tract tumor detection.Among them,our latest results on the gastric cancer and esophageal cancer are elaborately depicted.Finally,we outlook and discuss the potential advantages and challenges of TP-FLIM in future clinical applications.
基金supported by the Major Project of Natural Science Research in Universities of Anhui Province(KJ2018ZD037,KJ2018A0333)Key Project of Youth Talents in Universities of Anhui Province(gxyqZD2017067)+5 种基金National Natural Science Foundation of China(21401024)Natural Science Foundation of Anhui Province(1508085MB21)National Students Research Training Program(201810371028)Research Innovation Team of Fuyang Normal University(kytd201710)Horizontal Cooperation Project of Fuyang Municipal Government and Fuyang Normal University(XDHX2016011,XDHX2016004)Anhui University Research Innovation Platform Team Project(201549)
文摘An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The structure of the compound was solved by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, with a = 9.753(5), b = 8.815(5), c = 25.554(5) ?, β = 96.315(5)°, V = 2184(2) ?~3, Z = 2, D_c = 1.136 g/m^3, F(000) = 792, Μr = 746.92, μ = 0.069 mm^(-1), the final R = 0.0658 and wR = 0.1730 for 6790 observed reflections with I > 2(I). Study of nonlinear optical properties shows that the compound exhibits excellent two-photon excited fluorescence with the two-photon absorption cross-section value of 116 GM. The structure-property relationship was researched in detail through X-ray crystallography and quantum chemical calculation. Result of living cell imaging experiment shows its potential in fluorescence microscopy bioimaging.
基金supported in part by the National Key R&D Program of China(2017YFA0700402)National Natural Science Foundation of China(61961136005/61935012/62175163/61835009)+1 种基金Shenzhen Key projects(JCYJ20200109105404067)Shenzhen International Cooperation Project(GJHZ 20190822095420249).
文摘Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and redox processes.Nicotinamide adenine dinucleotide(NAD(P)H)is the primary producer of energy in mitochondria,changing NAD(P)H can directly reflect the physiological state of mitochondria.Therefore,NAD(P)H can be used to evaluate metabolic response.In this paper,we propose a noninvasive detection method that uses two-photon fluorescence lifetime imaging microscopy(TP-FLIM)to characterize apoptosis by observing the binding kinetics of cellular endogenous NAD(P)H.The result shows that the average fluorescence lifetime of NAD(P)H and the fluorescence lifetime of protein-bound NAD(P)H will be affected by the changing pH,serum content,and oxygen concentration in the cell culture environment,and by the treatment with reagents such as H2O2 and paclitaxel.Taxol(PTX).This noninvasive detection method realized the dynamic detection of cellular endogenous substances and the assessment of apoptosis.
基金The project partially supported by Natural Science Foundation of Jiangsu Province of China under Grant No. BK2005062
文摘We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The, dynamic equations of such a system are derived by using the technique of quantum Laugevin opera.tots, and then arre studied numerically under different driving" conditions, The results show that trader certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic populations, atomic coherences, and injected classical field, stable and bistable states. Chaos can be inhibited by atomic In ,addition, no chaos occurs in optical bista.bility.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374096 and 11405052)
文摘Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.