The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments...The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as ill...The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.展开更多
The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, res...The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.展开更多
Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting w...Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.展开更多
One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If ...One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If the relationship between the space and the image plane is assumed to be linear, the relationship can be expressed in terms of a transfor-mation matrix and the matrix is often identified by regression. In this paper, we show that the space-to-image relation-ship in a camera can be modeled by a simple neural network. Unlike most other cases employing neural networks, the structure of the network is optimized so as for each link between neurons to have a physical meaning. This makes it possible to effectively initialize link weights and quickly train the network.展开更多
The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achiev...The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.展开更多
以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究...以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究结果表明:基于XGBoost算法构建的人-虎共存区域风险等级划分模型分类效果好、预测准确度高,运用该模型对人-虎共存区域进行风险等级划分是可行的。展开更多
An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-t...An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.展开更多
文摘The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
基金The National Natural Science Foundation of China(No.60972001)the Science and Technology Plan of Suzhou City(No.SG201076)
文摘The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.
基金Projects NCET-04-0484 supported by the New-Century Outstanding Young Scientist Program from the Ministry of Education and D0605046040191-101Beijing Science and Technology Program
文摘The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.
基金National Natural Science Foundation of China(61732016).
文摘Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.
文摘One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If the relationship between the space and the image plane is assumed to be linear, the relationship can be expressed in terms of a transfor-mation matrix and the matrix is often identified by regression. In this paper, we show that the space-to-image relation-ship in a camera can be modeled by a simple neural network. Unlike most other cases employing neural networks, the structure of the network is optimized so as for each link between neurons to have a physical meaning. This makes it possible to effectively initialize link weights and quickly train the network.
基金supported by the National Natural Science Foundation of China (Grant No.42171311)the Open Fund of State Key Laboratory of Remote Sensing Science (Grant No.OFSLRSS202218)+1 种基金the Key Research and Development Program of the Hainan Province,China (Grant No.ZDYF2021SHFZ105)the Training Program of Excellent Master Thesis of Zhejiang Ocean University.
文摘The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.
文摘以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究结果表明:基于XGBoost算法构建的人-虎共存区域风险等级划分模型分类效果好、预测准确度高,运用该模型对人-虎共存区域进行风险等级划分是可行的。
基金The National Natural Science Foundation of China(No. 60972001 )the Science and Technology Plan of Suzhou City(No. SG201076)
文摘An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.