Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative moti...Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.展开更多
In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i...In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics with the Copenhagen interpretation. This turn from physics to language does not only realize theremarkable extensionof quantum mechanicsbut alsoestablish the method of science. Our study will be executed in the easy example of the Monty Hall problem. Although our argument is simple, we believe that it is worth pointing out the fact that the principle of equal probability can be, for the first time, clarified in measurement theory (based on the dualism) and not the conventional statistics (based on Kolmogorov’s probability theory).展开更多
The method of the temperature measurement based on the fluorescence lifetime and fiber transmitting technology is proposed. The certain or uncertain relationship between temperature and optical characteristics of some...The method of the temperature measurement based on the fluorescence lifetime and fiber transmitting technology is proposed. The certain or uncertain relationship between temperature and optical characteristics of some fluorescence material excited by function pulse or square wave pulse, and the temperature relativity of the feature are analyzed. The method based on the wavelet transformation theory is given to acquire temperature signals accurately and to remove the noise.展开更多
We discuss the fact that there is a crucial contradiction within Von Neumann’s theory. We derive a proposition concerning a quantum expected value under an assumption of the existence of the orientation of reference ...We discuss the fact that there is a crucial contradiction within Von Neumann’s theory. We derive a proposition concerning a quantum expected value under an assumption of the existence of the orientation of reference frames in N spin-1/2 systems (1 ≤ N to a new constant . It may be said that a new type of the quantum theory early approaches Newton’s theory in the macroscopic scale than the old quantum theory does. We discuss how our solution is used in an implementation of Deutsch’s algorithm.展开更多
The velocities of tectonic plates derived from GNSS time series are regularly used as input data for geophysical models. However, as shown by numerous researches, the coordinates time series contain residual errors of...The velocities of tectonic plates derived from GNSS time series are regularly used as input data for geophysical models. However, as shown by numerous researches, the coordinates time series contain residual errors of a systematic nature, which can significantly affect the reliability of the obtained velocity estimates. This research shows that using non-classical error theory of measurement(NETM)for processing GNSS time series allows detecting the presence of weak, not removed from GNSS processing, sources of systematic errors. Based on the coordinate time series of selected permanent GNSS stations in Europe, we checked the empirical distributions of errors by the NETM on G. Jeffries’ recommendations and on the principles of the theory of hypothesis tests according to Pearson’s criterion. It is established that the obtained coordinates time series of GNSS-stations only partially confirm the hypothesis of their conformity to the normal Gaussian distribution law, and this may be the main reason for their unrepresentative classification. In the future, it is necessary to identify and take into account the causes of residual errors that distort the real distribution of the results of the GNSS time series.展开更多
ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the ...ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the core tools in ISO/TS 16949. MSA aims to evaluate Gauge Repeatability and Reproducibility (GR&R) where the control, monitoring, and maintenance of the measurement process are required in measurement systems so that the measurement capability could be ensured under statistical control. An ideal measurement system should present the statistical characteristic of zero error on any measured product. Nevertheless, such an ideal measurement system hardly exists. Managers therefore have to adopt such measurement systems with unsatisfactory statistical characteristics. Traditional MSA indexes are constructed with definite observed values. Nevertheless, measurements with observed values are not entirely error-free. For this reason, this study proposes to research three cases in a case company and apply the integration of Fuzzy Theory and GR&R to discuss the differences in the evaluation index GR&R and the Number of Distinct Categories (NDC). Substituting fuzzy numbers for definite numbers found that the data of %GR&R were increased and NDC was decreased after fuzzification. Such results verify that the fuzzified %GR&R and NDC become stricter in the determination criterion. The research outcomes could assist the case company in improving the reference data of measurement systems and promoting the measurement quality.展开更多
After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a n...After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a necessary condition in derivation of Lorentz Transformation;instead, this thesis proposes the velocity of graviton may feature superluminal, constant velocity in different directions, and independence of inertial reference frame speeds. This is an optional thought of correction. According serial hypothesis, an equation of graviton’s motion trace, i.e., the central curve of nebula density, is established for spiral galaxy. Thus we gain the method to measure velocity of graviton. If to totally avoid problem of limit speed, we have to search for independent of inertia frames, and relevant to space-time properties. Regarding current difficulties of singular points in the Theory of Limited Universe, this thesis points out that the document [1] is the best solution to these difficulties.展开更多
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
Quantum phase measurement with multiphoton twin-Fock states has been shown to be optimal for detecting equal numbers of photons at the output ports of a Mach–Zehnder interferometer(i.e., the so-called single-fringe d...Quantum phase measurement with multiphoton twin-Fock states has been shown to be optimal for detecting equal numbers of photons at the output ports of a Mach–Zehnder interferometer(i.e., the so-called single-fringe detection), since the phase sensitivity can saturate the quantum Cramér–Rao lower bound at certain values of phase shift. Here we report a further step to achieve a global phase estimation at the Heisenberg limit by detecting the particle-number difference(i.e., the ?_z measurement). We show the role of experimental imperfections on the ultimate estimation precision with the six-photon twin-Fock state of light. Our results show that both the precision and the sensing region of the ?_z measurement are better than those of the single-fringe detection, due to combined contributions of the measurement outcomes. We numerically simulate the phase estimation protocol using an asymptotically unbiased maximum likelihood estimator.展开更多
In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indi...In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.展开更多
It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability th...It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability theory, since it is not guaranteed that mathematics and our world are connected. In order that mathematics asserts some statements concerning our world, a certain theory (so called “world view”) mediates between mathematics and our world. Recently we propose measurement theory (i.e., the theory of the quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. In this paper, we assert that statistics is based on measurement theory. And, for example, we show, from the pure theoretical point of view (i.e., from the measurement theoretical point of view), that regression analysis can not be justified without Bayes’ theorem. This may imply that even the conventional classification of (Fisher’s) statistics and Bayesian statistics should be reconsidered.展开更多
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t...To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.展开更多
Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is em...Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.展开更多
Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes ...Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes important at high frequencies. This paper studies the estimate theory and measuring technique of the transverse wave intensity in two-dimensional homogeneous structures. In general, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Each axial intensity component is proportional to two imaginary parts of cross spectral densities and its estimate is complicated. For the special case where transverse waves propagate in one direction, the intensity variation is zero and the estimate of the intensity is simplified. The intensity technique is formed based on the finite difference principle. Transverse wave intensity can be measured using a pair of two-transducer arrays lying in the orthogonal direction for the general case or a two-transducer array lying in the propagating direction for the special case. In order to assess the measurement accuracy of transverse wave intensify, the coupling loss factors from bending to transverse waves in building structures were measured using the intensity technique and compared with the results predicted and measured using the conventional method. It is shown that the agreement between the results measured using the intensity technique and that by the conventional method is good.展开更多
Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China I...Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.展开更多
An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the abso...An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.展开更多
According to quantum mechanics, the outcome of an experiment exists relative to an Experimenter who performs a measurement on the system under study. Witnessing the outcome of an experience requires the measurement on...According to quantum mechanics, the outcome of an experiment exists relative to an Experimenter who performs a measurement on the system under study. Witnessing the outcome of an experience requires the measurement on a physical system whose size must match the complexity of the Experimenter’s observation. We argue that such a physical system must have a certain space-time extension so that it can encode the rich and complex data embedded in the witnessed experience. The complementarity principle in quantum mechanics leads us to conjecture that the observable events constituting an experience have space-like separation with each other. This seems to be in contradiction with our perceived locality of physical laws, and encourages us to think that the act of measurement is not a physical process, in the sense that a measurement outcome witnessed by an Experimenter is not necessarily related to the physical description of the Experimenter observed from the outside.展开更多
In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in ...In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.展开更多
Soil radon measurement of high stability and sensitivity is widely applied,and in some applications,such as in uranium prospecting,^(222)Rn should be distinguished from ^(220)Rn.To meet this requirement,a practical me...Soil radon measurement of high stability and sensitivity is widely applied,and in some applications,such as in uranium prospecting,^(222)Rn should be distinguished from ^(220)Rn.To meet this requirement,a practical method based on soil radon diffusion and accumulation theory to measure soil radon by Alpha Particle Spectroscopy(α-PS)is discussed in this paper.Theα-PS measurement method can effectively overcome the effects of ^(220)Rn and its daughters (^(216)Po,^(212)Bi,^(212)Po).The system can eliminate the impact of soil radon field disturbance and non-uniformity through soil radon static diffusion.Radon daughters(^(218)Po,^(214)Po)are accumulated under the action of an electrostatic force, which not only enhances the measurement sensitivity,but also increases robustness of the measurement.Simultaneous measurement of multiple points can increase the comparability of measurement data and the measurement efficiency. Experimental data shows that the soil radon measurement method was robust.So it has wide applications such as in geological prospecting,in fissure groundwater exploration and in ground subsidence inspection.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
文摘Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.
文摘In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics with the Copenhagen interpretation. This turn from physics to language does not only realize theremarkable extensionof quantum mechanicsbut alsoestablish the method of science. Our study will be executed in the easy example of the Monty Hall problem. Although our argument is simple, we believe that it is worth pointing out the fact that the principle of equal probability can be, for the first time, clarified in measurement theory (based on the dualism) and not the conventional statistics (based on Kolmogorov’s probability theory).
文摘The method of the temperature measurement based on the fluorescence lifetime and fiber transmitting technology is proposed. The certain or uncertain relationship between temperature and optical characteristics of some fluorescence material excited by function pulse or square wave pulse, and the temperature relativity of the feature are analyzed. The method based on the wavelet transformation theory is given to acquire temperature signals accurately and to remove the noise.
文摘We discuss the fact that there is a crucial contradiction within Von Neumann’s theory. We derive a proposition concerning a quantum expected value under an assumption of the existence of the orientation of reference frames in N spin-1/2 systems (1 ≤ N to a new constant . It may be said that a new type of the quantum theory early approaches Newton’s theory in the macroscopic scale than the old quantum theory does. We discuss how our solution is used in an implementation of Deutsch’s algorithm.
文摘The velocities of tectonic plates derived from GNSS time series are regularly used as input data for geophysical models. However, as shown by numerous researches, the coordinates time series contain residual errors of a systematic nature, which can significantly affect the reliability of the obtained velocity estimates. This research shows that using non-classical error theory of measurement(NETM)for processing GNSS time series allows detecting the presence of weak, not removed from GNSS processing, sources of systematic errors. Based on the coordinate time series of selected permanent GNSS stations in Europe, we checked the empirical distributions of errors by the NETM on G. Jeffries’ recommendations and on the principles of the theory of hypothesis tests according to Pearson’s criterion. It is established that the obtained coordinates time series of GNSS-stations only partially confirm the hypothesis of their conformity to the normal Gaussian distribution law, and this may be the main reason for their unrepresentative classification. In the future, it is necessary to identify and take into account the causes of residual errors that distort the real distribution of the results of the GNSS time series.
文摘ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the core tools in ISO/TS 16949. MSA aims to evaluate Gauge Repeatability and Reproducibility (GR&R) where the control, monitoring, and maintenance of the measurement process are required in measurement systems so that the measurement capability could be ensured under statistical control. An ideal measurement system should present the statistical characteristic of zero error on any measured product. Nevertheless, such an ideal measurement system hardly exists. Managers therefore have to adopt such measurement systems with unsatisfactory statistical characteristics. Traditional MSA indexes are constructed with definite observed values. Nevertheless, measurements with observed values are not entirely error-free. For this reason, this study proposes to research three cases in a case company and apply the integration of Fuzzy Theory and GR&R to discuss the differences in the evaluation index GR&R and the Number of Distinct Categories (NDC). Substituting fuzzy numbers for definite numbers found that the data of %GR&R were increased and NDC was decreased after fuzzification. Such results verify that the fuzzified %GR&R and NDC become stricter in the determination criterion. The research outcomes could assist the case company in improving the reference data of measurement systems and promoting the measurement quality.
文摘After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a necessary condition in derivation of Lorentz Transformation;instead, this thesis proposes the velocity of graviton may feature superluminal, constant velocity in different directions, and independence of inertial reference frame speeds. This is an optional thought of correction. According serial hypothesis, an equation of graviton’s motion trace, i.e., the central curve of nebula density, is established for spiral galaxy. Thus we gain the method to measure velocity of graviton. If to totally avoid problem of limit speed, we have to search for independent of inertia frames, and relevant to space-time properties. Regarding current difficulties of singular points in the Theory of Limited Universe, this thesis points out that the document [1] is the best solution to these difficulties.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91636108,11775190,and 11774024)Science Foundation of Zhejiang Sci-Tech University,China(Grant No.18062145-Y)+1 种基金Open Foundation of Key Laboratory of Optical Field Manipulation of Zhejiang Province,China(Grant No.ZJOFM-2019-002)Science Challenge Project,China(Grant No.TZ2018003)
文摘Quantum phase measurement with multiphoton twin-Fock states has been shown to be optimal for detecting equal numbers of photons at the output ports of a Mach–Zehnder interferometer(i.e., the so-called single-fringe detection), since the phase sensitivity can saturate the quantum Cramér–Rao lower bound at certain values of phase shift. Here we report a further step to achieve a global phase estimation at the Heisenberg limit by detecting the particle-number difference(i.e., the ?_z measurement). We show the role of experimental imperfections on the ultimate estimation precision with the six-photon twin-Fock state of light. Our results show that both the precision and the sensing region of the ?_z measurement are better than those of the single-fringe detection, due to combined contributions of the measurement outcomes. We numerically simulate the phase estimation protocol using an asymptotically unbiased maximum likelihood estimator.
基金Projects(41502283,41772309)supported by the National Natural Science Foundation of ChinaProject(2017YFC1501302)supported by the National Key Research and Development Program of ChinaProject(2017ACA102)supported by the Major Program of Technological Innovation of Hubei Province,China。
文摘In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.
文摘It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability theory, since it is not guaranteed that mathematics and our world are connected. In order that mathematics asserts some statements concerning our world, a certain theory (so called “world view”) mediates between mathematics and our world. Recently we propose measurement theory (i.e., the theory of the quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. In this paper, we assert that statistics is based on measurement theory. And, for example, we show, from the pure theoretical point of view (i.e., from the measurement theoretical point of view), that regression analysis can not be justified without Bayes’ theorem. This may imply that even the conventional classification of (Fisher’s) statistics and Bayesian statistics should be reconsidered.
基金The National Natural Science Foundation of China(No.51875429)General Program of Shenzhen Natural Science Foundation(No.JCYJ20190809142805521)Wenzhou Major Program of Scientific and Technological Innovation(No.ZG2021021).
文摘To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875006 and 10811120014, and China Nuclear Data Center.
文摘Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.
基金This work is financed by the National Natural Science Foundation of China
文摘Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes important at high frequencies. This paper studies the estimate theory and measuring technique of the transverse wave intensity in two-dimensional homogeneous structures. In general, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Each axial intensity component is proportional to two imaginary parts of cross spectral densities and its estimate is complicated. For the special case where transverse waves propagate in one direction, the intensity variation is zero and the estimate of the intensity is simplified. The intensity technique is formed based on the finite difference principle. Transverse wave intensity can be measured using a pair of two-transducer arrays lying in the orthogonal direction for the general case or a two-transducer array lying in the propagating direction for the special case. In order to assess the measurement accuracy of transverse wave intensify, the coupling loss factors from bending to transverse waves in building structures were measured using the intensity technique and compared with the results predicted and measured using the conventional method. It is shown that the agreement between the results measured using the intensity technique and that by the conventional method is good.
基金Supported by the Foundation of China Academy of Engineering Physics under Grant No 10576040, and the National Natural Science Foundation of China under Grant No 10705054.
文摘Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10734140, 10874156 and 10875109.
文摘An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.
文摘According to quantum mechanics, the outcome of an experiment exists relative to an Experimenter who performs a measurement on the system under study. Witnessing the outcome of an experience requires the measurement on a physical system whose size must match the complexity of the Experimenter’s observation. We argue that such a physical system must have a certain space-time extension so that it can encode the rich and complex data embedded in the witnessed experience. The complementarity principle in quantum mechanics leads us to conjecture that the observable events constituting an experience have space-like separation with each other. This seems to be in contradiction with our perceived locality of physical laws, and encourages us to think that the act of measurement is not a physical process, in the sense that a measurement outcome witnessed by an Experimenter is not necessarily related to the physical description of the Experimenter observed from the outside.
文摘In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.
文摘Soil radon measurement of high stability and sensitivity is widely applied,and in some applications,such as in uranium prospecting,^(222)Rn should be distinguished from ^(220)Rn.To meet this requirement,a practical method based on soil radon diffusion and accumulation theory to measure soil radon by Alpha Particle Spectroscopy(α-PS)is discussed in this paper.Theα-PS measurement method can effectively overcome the effects of ^(220)Rn and its daughters (^(216)Po,^(212)Bi,^(212)Po).The system can eliminate the impact of soil radon field disturbance and non-uniformity through soil radon static diffusion.Radon daughters(^(218)Po,^(214)Po)are accumulated under the action of an electrostatic force, which not only enhances the measurement sensitivity,but also increases robustness of the measurement.Simultaneous measurement of multiple points can increase the comparability of measurement data and the measurement efficiency. Experimental data shows that the soil radon measurement method was robust.So it has wide applications such as in geological prospecting,in fissure groundwater exploration and in ground subsidence inspection.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.