The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi...The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using ...Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H20 in the 1.56 and 1.36 gm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.展开更多
The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About...The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.展开更多
GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed r...GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.展开更多
The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of...The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of the size of the DBR on its coupling coefficient and reflectivity,and hence on the linewidth of the laser diodes. The linewidths were measured by employing a self heterodyne linewidth measurement system. The experimental and calculated data for DBR reflectivity and spectral linewidth are given. The relationship between these data and the dimensions of the DBR is analyzed. Based on this analysis,the effect of the DBR geometry on the linewidth of the lasers is explored. The results give useful information related to the design and fabrication of such DBR lasers.展开更多
Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follo...Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.展开更多
Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% ...Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.展开更多
The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxat...The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.展开更多
We study the influence of ionized impurity scattering on the electron transport in resonant-phonon-assisted terahertz (THz) quantum-cascade lasers (QCLs). We treat the ionized impurity scattering rates within the ...We study the influence of ionized impurity scattering on the electron transport in resonant-phonon-assisted terahertz (THz) quantum-cascade lasers (QCLs). We treat the ionized impurity scattering rates within the single subband static screening approximation. We find that the ionized impurity scattering supplies an additional current channel across the device,and affects the electrondistribution in different subbands. We conclude that the ionized impurity scattering should be taken into account in the study of the transport properties of resonant-phonon-assisted THz QCLs.展开更多
Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanis...Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanisms of cross relaxation and energy transfer to describe the laser operation. A subroutine program for calculating the absorption rate of cladding pumped scheme is included in the model. The losses of signal and pump light along the fiber have been taken into account. The test of cladding pumped scheme program shows good agreement with the experimental result. The experimental results of core pumping Tm Ho doped fiber laser in fluoride host are compared with the present model, and shows a good agreement with calculations. This model also provides data of the optimum parameters for the configuration of the efficient cladding pumped Tm Ho fluoride laser systems.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFA1400500)New Cornerstone Science Foundation through the New Cornerstone Investigator Program,and the XPLORER Prize.
文摘The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金This work was supported by the National Basic Research Program of China (No.2013BAK12B00 and No.2013CB834602) and the National Natural Science Foundation of China (No.21225314 and No.21427804).
文摘Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H20 in the 1.56 and 1.36 gm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.
文摘The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.
文摘GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.
文摘The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of the size of the DBR on its coupling coefficient and reflectivity,and hence on the linewidth of the laser diodes. The linewidths were measured by employing a self heterodyne linewidth measurement system. The experimental and calculated data for DBR reflectivity and spectral linewidth are given. The relationship between these data and the dimensions of the DBR is analyzed. Based on this analysis,the effect of the DBR geometry on the linewidth of the lasers is explored. The results give useful information related to the design and fabrication of such DBR lasers.
文摘Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.
文摘Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.
文摘The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.
文摘We study the influence of ionized impurity scattering on the electron transport in resonant-phonon-assisted terahertz (THz) quantum-cascade lasers (QCLs). We treat the ionized impurity scattering rates within the single subband static screening approximation. We find that the ionized impurity scattering supplies an additional current channel across the device,and affects the electrondistribution in different subbands. We conclude that the ionized impurity scattering should be taken into account in the study of the transport properties of resonant-phonon-assisted THz QCLs.
文摘Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanisms of cross relaxation and energy transfer to describe the laser operation. A subroutine program for calculating the absorption rate of cladding pumped scheme is included in the model. The losses of signal and pump light along the fiber have been taken into account. The test of cladding pumped scheme program shows good agreement with the experimental result. The experimental results of core pumping Tm Ho doped fiber laser in fluoride host are compared with the present model, and shows a good agreement with calculations. This model also provides data of the optimum parameters for the configuration of the efficient cladding pumped Tm Ho fluoride laser systems.