In this paper,a stable two-sided matching(TSM)method considering the matching intention of agents under a hesitant fuzzy environment is proposed.The method uses a hesitant fuzzy element(HFE)as its basis.First,the HFE ...In this paper,a stable two-sided matching(TSM)method considering the matching intention of agents under a hesitant fuzzy environment is proposed.The method uses a hesitant fuzzy element(HFE)as its basis.First,the HFE preference matrix is transformed into the normalized HFE preference matrix.On this basis,the distance and the projection of the normalized HFEs on positive and negative ideal solutions are calculated.Then,the normalized HFEs are transformed into agent satisfactions.Considering the stable matching constraints,a multiobjective programming model with the objective of maximizing the satisfactions of two-sided agents is constructed.Based on the agent satisfaction matrix,the matching intention matrix of two-sided agents is built.According to the agent satisfaction matrix and matching intention matrix,the comprehensive satisfaction matrix is set up.Furthermore,the multiobjective programming model based on satisfactions is transformed into a multiobjective programming model based on comprehensive satisfactions.Using the G-S algorithm,the multiobjective programming model based on comprehensive satisfactions is solved,and then the best TSM scheme is obtained.Finally,a terminal distribution example is used to verify the feasibility and effectiveness of the proposed method.展开更多
In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the...In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.展开更多
Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level bet...Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.展开更多
This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechan...This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study.展开更多
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include d...Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include damage to piers,abutments,shear keys,bearings and restrainers,and possible collapse of deck spans.This paper investigates pounding in bridges from an analytical perspective.A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior,to study the seismic response to longitudinal ground motion.Pounding is implemented using the contact force-based Kelvin model,as well as the momentum-based stereomechanical approach.Parameter studies are conducted to determine the effects of frame period ratio,column hysteretic behavior,energy dissipation during impact and near source ground motions on the pounding response of the bridge.The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7.Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact,especially for elastic behavior of the frames.Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion.Finally,it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.展开更多
In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dim...In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dimensional analysis leads to a condensed presentation of the response, and the remarkable self-similarity property for bilinear MDOF buildings with inelastic collision is uncovered. It is shown that when the response is expressed in the appropriate dimensionless form, response spectra for any intensity of the excitation collapse to a single master curve. The reduced Π set explicitly describes the interaction between the colliding structures. The effect of pounding on the MDOF building’s response is illustrated using three well-divided spectral regions(amplifi ed, de-amplifi ed and unaffected regions). Parametric studies are conducted to investigate the effects of the story stiffness of structures, the story stiffness ratio and mass ratio of adjacent buildings, the structural inelastic characteristics and the gap size values. Results show that(i) the infl uence of system stiffness ratio to the lighter and more fl exible building is more signifi cant in the fi rst spectral region, where the maximum response of the building is amplifi ed because of pounding; and(ii) the velocity and pounding force of the heavier and stiffer building is unexpectedly sensitive to the mass ratio of adjacent buildings.展开更多
Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions bet...Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.展开更多
Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which...Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which required lubricant. To solve the above problem, a bearingless travelling-wave USM is designed. First, a novel structure of the two-sided USM consisting of a two-sided teeth stator and two disk-type rotors is designed. And the excitation principle of the two-sided travelling-wave USM is analyzed. Then, using ANSYS software, we set up the model of the stator to predict the excitation frequency and modal response of the stator. The shape of the vibration mode was obtained. Last, the load characteristics of the USM are measured using ex-perimental method. The maximum stall torque and the no-load speed were obtained. The results showed that the characteristics of the two-sided USM are better than those of the conventional one-sided USM.展开更多
In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman pl...In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman plate theory including geometrical nonlinearity is used to obtain the deflection of the micro-plate. Galerkin decomposition method is then employed, and nonlinear ordinary differential equations (ODEs) of motion are determined. A harmonic balance method (HBM) is applied to equations and analytical relation for nonlineaT frequency response (F-R) curves are derived for two categories (including and neglecting Casimir force) separately. The analytical results for three cases:(1) semi-linear vibration;(2) weakly nonlinear vibration;(3) highly non linear vibration, are validated by comparing with the numerical solutio ns. After validation, the effects of the voltage and Casimir force on the natural frequency of two-sided capacitor system are investigated. It is shown that by assuming Casimir force in small gap distances, reduction of the natural frequency is considerable. The influences of the applied voltage, damping, micro-plate thickness and Casimir force on the frequency response curves have been presented too. The results of this study can be useful for modeling circular parallel-plates in nano /microelectromechanical transducers such as microphones and pressure sensors.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematica...A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.展开更多
The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided se...The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.展开更多
In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and driv...In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.展开更多
Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo...Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.展开更多
Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maxim...Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.展开更多
In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performan...In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performance of three closely spaced,adjacent G+10,fixed-base MDOF systems with the mass aligned at the same levels and subjected to accidental underground blast loading.The acceleration time history of underground blast loading is generated based on past empirical relationships.The blast charge weight varies from 10 to 75 t while keeping the charge distance constant(R=100 m).The entire formulation is solved with the MATLAB solver,using the state space form solution.Three cases are considered,based on changing the position of the three stick systems.The first case considered left building rigid,middle building moderate rigid,and right building flexible.The second assumed left building flexible,middle building rigid,and right building moderate rigid.The third examined the left building as moderate rigid,the middle building as flexible,and the right building rigid.An analysis of the results shows that the arrangement with low stiffness,high stiffness,and moderately stiff buildings placed to the left,middle,and right side,respectively,yields minimum structural response when compared to the other two combinations.展开更多
In this paper, existence and uniqueness of solution to two-point boundary value for two-sided fractional differential equations involving Caputo fractional derivative is discussed, by means of the Min-Max Theorem.
In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type in...In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type inequality and a criteria for a is also presented.展开更多
The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displ...The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.展开更多
The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrast...The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrastively investigated,and the precipitates in the samples were analyzed using transmission electron microscope and energy dispersive spectrometer. The results show the ferrite grain size of the steel plate after high-temperature enamel firing to be fine,with a large number of TiC and Ti;C;S;precipitates dispersed throughout the ferrite matrix. After two rounds of enamel firing at a temperature range of 800-890 ℃,its yield strength can still reach342 MPa. The results of a hydrogen permeation test show that the hydrogen storage properties of the steel plate are much better than those of ordinary structural carbon steel. A better bubble structure in the enamel layer can be obtained by this steel plate,with no fish-scale defects on the enameled steel-plate surface.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.71861015)the Humanities and Social Science Foundation of the Ministry of Education of China (Grant No.18YJA630047)the Distinguished Young Scholar Talent of Jiangxi Province (Grant No.20192BCBL23008).
文摘In this paper,a stable two-sided matching(TSM)method considering the matching intention of agents under a hesitant fuzzy environment is proposed.The method uses a hesitant fuzzy element(HFE)as its basis.First,the HFE preference matrix is transformed into the normalized HFE preference matrix.On this basis,the distance and the projection of the normalized HFEs on positive and negative ideal solutions are calculated.Then,the normalized HFEs are transformed into agent satisfactions.Considering the stable matching constraints,a multiobjective programming model with the objective of maximizing the satisfactions of two-sided agents is constructed.Based on the agent satisfaction matrix,the matching intention matrix of two-sided agents is built.According to the agent satisfaction matrix and matching intention matrix,the comprehensive satisfaction matrix is set up.Furthermore,the multiobjective programming model based on satisfactions is transformed into a multiobjective programming model based on comprehensive satisfactions.Using the G-S algorithm,the multiobjective programming model based on comprehensive satisfactions is solved,and then the best TSM scheme is obtained.Finally,a terminal distribution example is used to verify the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation in China(Yue Qi,Project No.71861015).
文摘In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.
基金National Natural Science Foundation of China Under Grant No.50778077 and 50878093
文摘Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.
基金Earthquake Engineering and Engineering Vibration Laboratory Foundation,Institute of Engineering Mechanics, China Earthquake Administration Under Grant No.2009a1the National Natural Science Foundation of China under Grant No.50878071
文摘This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study.
基金Earthquake Engineering Research Centers Program of the National Science Foundation Under Award Number EEC-9701785(Mid-America Earthquake Center)
文摘Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include damage to piers,abutments,shear keys,bearings and restrainers,and possible collapse of deck spans.This paper investigates pounding in bridges from an analytical perspective.A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior,to study the seismic response to longitudinal ground motion.Pounding is implemented using the contact force-based Kelvin model,as well as the momentum-based stereomechanical approach.Parameter studies are conducted to determine the effects of frame period ratio,column hysteretic behavior,energy dissipation during impact and near source ground motions on the pounding response of the bridge.The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7.Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact,especially for elastic behavior of the frames.Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion.Finally,it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.
基金the National Natural Science Foundation of China under Grant Nos.51322801,51238012 and 91215301)the Program for International Science and Technology Cooperation Projects of China under Grant No.2012DFA70810+1 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-11-08the National Science and Technology Major Project under Grant 2013zx06002001-09
文摘In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dimensional analysis leads to a condensed presentation of the response, and the remarkable self-similarity property for bilinear MDOF buildings with inelastic collision is uncovered. It is shown that when the response is expressed in the appropriate dimensionless form, response spectra for any intensity of the excitation collapse to a single master curve. The reduced Π set explicitly describes the interaction between the colliding structures. The effect of pounding on the MDOF building’s response is illustrated using three well-divided spectral regions(amplifi ed, de-amplifi ed and unaffected regions). Parametric studies are conducted to investigate the effects of the story stiffness of structures, the story stiffness ratio and mass ratio of adjacent buildings, the structural inelastic characteristics and the gap size values. Results show that(i) the infl uence of system stiffness ratio to the lighter and more fl exible building is more signifi cant in the fi rst spectral region, where the maximum response of the building is amplifi ed because of pounding; and(ii) the velocity and pounding force of the heavier and stiffer building is unexpectedly sensitive to the mass ratio of adjacent buildings.
文摘Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.
基金Project (No. 50175018) supported by the National Natural ScienceFoundation of China
文摘Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which required lubricant. To solve the above problem, a bearingless travelling-wave USM is designed. First, a novel structure of the two-sided USM consisting of a two-sided teeth stator and two disk-type rotors is designed. And the excitation principle of the two-sided travelling-wave USM is analyzed. Then, using ANSYS software, we set up the model of the stator to predict the excitation frequency and modal response of the stator. The shape of the vibration mode was obtained. Last, the load characteristics of the USM are measured using ex-perimental method. The maximum stall torque and the no-load speed were obtained. The results showed that the characteristics of the two-sided USM are better than those of the conventional one-sided USM.
文摘In this study, forced nonlinear vibration of a circular micro-plate under two-sided electrostatic, two-sided Casimir and external harmonic forces is investigated analytically. For this purpose, at first, von Karman plate theory including geometrical nonlinearity is used to obtain the deflection of the micro-plate. Galerkin decomposition method is then employed, and nonlinear ordinary differential equations (ODEs) of motion are determined. A harmonic balance method (HBM) is applied to equations and analytical relation for nonlineaT frequency response (F-R) curves are derived for two categories (including and neglecting Casimir force) separately. The analytical results for three cases:(1) semi-linear vibration;(2) weakly nonlinear vibration;(3) highly non linear vibration, are validated by comparing with the numerical solutio ns. After validation, the effects of the voltage and Casimir force on the natural frequency of two-sided capacitor system are investigated. It is shown that by assuming Casimir force in small gap distances, reduction of the natural frequency is considerable. The influences of the applied voltage, damping, micro-plate thickness and Casimir force on the frequency response curves have been presented too. The results of this study can be useful for modeling circular parallel-plates in nano /microelectromechanical transducers such as microphones and pressure sensors.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
基金Key Projectof Scientific and TechnologicalCommittee of Shanghai(No.0 3 11110 0 5 )
文摘A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.
文摘In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.
文摘Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.
基金Supported by National Natural Science Foundation of China (No. 50578109)Tianjin Municipal Natural Science Foundation of China(No. 05YFGMGC10900)
文摘Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.
文摘In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performance of three closely spaced,adjacent G+10,fixed-base MDOF systems with the mass aligned at the same levels and subjected to accidental underground blast loading.The acceleration time history of underground blast loading is generated based on past empirical relationships.The blast charge weight varies from 10 to 75 t while keeping the charge distance constant(R=100 m).The entire formulation is solved with the MATLAB solver,using the state space form solution.Three cases are considered,based on changing the position of the three stick systems.The first case considered left building rigid,middle building moderate rigid,and right building flexible.The second assumed left building flexible,middle building rigid,and right building moderate rigid.The third examined the left building as moderate rigid,the middle building as flexible,and the right building rigid.An analysis of the results shows that the arrangement with low stiffness,high stiffness,and moderately stiff buildings placed to the left,middle,and right side,respectively,yields minimum structural response when compared to the other two combinations.
文摘In this paper, existence and uniqueness of solution to two-point boundary value for two-sided fractional differential equations involving Caputo fractional derivative is discussed, by means of the Min-Max Theorem.
基金the National Natural Science Foundation of China(10271091)
文摘In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type inequality and a criteria for a is also presented.
基金Project(51078242)supported by the National Natural Science Foundation of China
文摘The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.
文摘The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrastively investigated,and the precipitates in the samples were analyzed using transmission electron microscope and energy dispersive spectrometer. The results show the ferrite grain size of the steel plate after high-temperature enamel firing to be fine,with a large number of TiC and Ti;C;S;precipitates dispersed throughout the ferrite matrix. After two rounds of enamel firing at a temperature range of 800-890 ℃,its yield strength can still reach342 MPa. The results of a hydrogen permeation test show that the hydrogen storage properties of the steel plate are much better than those of ordinary structural carbon steel. A better bubble structure in the enamel layer can be obtained by this steel plate,with no fish-scale defects on the enameled steel-plate surface.