The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi...Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.展开更多
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen...The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.展开更多
Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the ...Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods s...To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on. By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified. Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support. Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively. Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors. The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties.展开更多
Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate t...Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.展开更多
In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pilla...In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pillar zones are not protected enough. The results of numerical analysis have shown that tensile stress in T- section beam appears not only in a web but in flanges as well. Thus reinforcing bars should be distributed within the whole effective width. This fact is mentioned in building codes, for example, in Eurocode 2: "Design of concrete structures", both in part 1.1 "General rules and rules for building" and in part 2 "Reinforced and prestressed concrete bridges", but there are not detailed rules how to place the bars in flanges of T-section.展开更多
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ...Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radi...We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.展开更多
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crac...As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.展开更多
In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships ...In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.展开更多
The stability and reliability of an ion source and its beam availability are extremely significant for any accelerator,especially for those high current long term CW operation ones like ADS. Although the first high qu...The stability and reliability of an ion source and its beam availability are extremely significant for any accelerator,especially for those high current long term CW operation ones like ADS. Although the first high quality 306-hours continuous wave(CW) operating curve at 50 m A@35 ke V has been successfully obtained with a standard compact 2.45 GHz ECR ion source at Peking University(PKU), but the uncertainties that caused beam trips before are unacceptable during an accelerator real operation and should be eliminated. Meanwhile, no permission will be given when the beam power is upgraded from 50 m A@35 ke V to 50 m A@50 ke V. To improve the PKU CW proton source quality, several upgrades were done recently. After those improvements, a new long term CW proton beam experiment at 50 m A@50 ke V was carried out in June 2016. The total running time is 300.5 hours, including near 6 hours ion source preparation and 294 hours non-disturb continuous operation. Within the continuous 13 days operation, no beam-off happened, no spark was observed,no beam drop appeared, no interrupting action was needed, and only a few beam fluctuations caused by the air conditional failure occurred. Beam availability and reliability within the 294 hours is 100%. The root-mean-square(RMS) emittance of this 50 m A@50 ke V CW proton beam is about 0.186 π.mm.mrad. A careful inspection of the ion source was done after this long term operation and no obvious damage was found. The restart experimental results obtained after the ion source inspection prove the high repeatability of PKU PMECRIS. In addition, a 130-m A H+beam was obtained at 50 k V with duty factor of 10%(100 Hz/1 ms) with this source. Details will be presented in this paper.展开更多
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l...Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.展开更多
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
文摘Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.
基金supported by the Hebei Provincial Natural Science Foundation of China(No.E2007000591).
文摘The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.
基金supported by the Scheme of Science and Technology of Guangdong Province (2005B32801002), China
文摘Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
基金Sponsored by Changjiang Scholars Program of China (Grant No 2009-37)New Century Talent Support Program Project of Ministry of Education (Secretary for Education account2005290)
文摘To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on. By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified. Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support. Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively. Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors. The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties.
文摘Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.
文摘In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pillar zones are not protected enough. The results of numerical analysis have shown that tensile stress in T- section beam appears not only in a web but in flanges as well. Thus reinforcing bars should be distributed within the whole effective width. This fact is mentioned in building codes, for example, in Eurocode 2: "Design of concrete structures", both in part 1.1 "General rules and rules for building" and in part 2 "Reinforced and prestressed concrete bridges", but there are not detailed rules how to place the bars in flanges of T-section.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2014M552158)supported by China Postdoctoral Science Foundation
文摘Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
基金supported by the National Natural Science Foundation of China (Grant No. 50775127)the Major State Basic Research Development Program of China (Grant No. 2010CB922901)the Independent Research Projects of Tsinghua University,China (Grant No. 2009THZ06)
文摘We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.
基金Supported by National Natural Science Foundation of China(Grant Nos.51035008,51304019)National Science Foundation of USA(Grant Nos.CMMI-1000830,CMMI-1229532)+1 种基金the University of Maryland Baltimore County Directed Research Initiative Fund ProgramFundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-123A2)
文摘As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.
文摘In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB845502)the National Natural Science Foundation of China(Grant No.11575013)
文摘The stability and reliability of an ion source and its beam availability are extremely significant for any accelerator,especially for those high current long term CW operation ones like ADS. Although the first high quality 306-hours continuous wave(CW) operating curve at 50 m A@35 ke V has been successfully obtained with a standard compact 2.45 GHz ECR ion source at Peking University(PKU), but the uncertainties that caused beam trips before are unacceptable during an accelerator real operation and should be eliminated. Meanwhile, no permission will be given when the beam power is upgraded from 50 m A@35 ke V to 50 m A@50 ke V. To improve the PKU CW proton source quality, several upgrades were done recently. After those improvements, a new long term CW proton beam experiment at 50 m A@50 ke V was carried out in June 2016. The total running time is 300.5 hours, including near 6 hours ion source preparation and 294 hours non-disturb continuous operation. Within the continuous 13 days operation, no beam-off happened, no spark was observed,no beam drop appeared, no interrupting action was needed, and only a few beam fluctuations caused by the air conditional failure occurred. Beam availability and reliability within the 294 hours is 100%. The root-mean-square(RMS) emittance of this 50 m A@50 ke V CW proton beam is about 0.186 π.mm.mrad. A careful inspection of the ion source was done after this long term operation and no obvious damage was found. The restart experimental results obtained after the ion source inspection prove the high repeatability of PKU PMECRIS. In addition, a 130-m A H+beam was obtained at 50 k V with duty factor of 10%(100 Hz/1 ms) with this source. Details will be presented in this paper.
文摘Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.