Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi...Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.展开更多
Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate th...Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.展开更多
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the character...A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.展开更多
Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun i...Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun into hollow fiber.The fiber was then treated withaqueous NaOH.In this paper,kinetics and mechanism of alkaline hydrolysis of PET,CDP andtheir blend PET/CDP fiber were studied by means of specific area measurement,scantling elec-tron microscopy and other chemical analyses.It was showed that the rate of alkaline hydrolysis isCDP】PET/CDP】PET.Because of blending effect,the alkaline hydrolysis of PET/CDP is dif-ferent from that of PET.CDP phase in the PET/CDP fiber is predominantly hydrolyzed,andhence some pieces of fiber(micro-fiber) fall off the fiber because of etching.展开更多
Organic halogens generated in the chlorlnatlon treatment of wool are proven to be acutely toxic to human beings. Legislation on environmental pollution has become more and more stringent in recent years. So the chlorl...Organic halogens generated in the chlorlnatlon treatment of wool are proven to be acutely toxic to human beings. Legislation on environmental pollution has become more and more stringent in recent years. So the chlorlnation treatment is faced with disuse. Alkaline hydrolysis is adopted to reduce the AOX (Absorbable Organic Halogen) concentrations in the effluents from the chlorlnatlontreatment under 40℃ and pH values 9, 10, 11 and 12. After treatment the reduction of AOX appears approximately 65%.展开更多
Cod muscle protein was hydrolyzed by an alkaline protease in our study. The influences of hydrolysis temperature,fish protein concentration,and ratio of protease addition to protein amount on its degree of hy- drolysi...Cod muscle protein was hydrolyzed by an alkaline protease in our study. The influences of hydrolysis temperature,fish protein concentration,and ratio of protease addition to protein amount on its degree of hy- drolysis (DH) of protein were studied in details by applying dual quadratic rotary combinational design. The final results showed that more than 84% cod muscle protein could be hydrolyzed and recovered. Cod protein hydrolysate thus obtained had a balanced amino acid composition and mainly consisted of small peptides with molecule weight less than 6900 dalton.展开更多
Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copo...Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copolyester that can be rapidly hydro-degraded in the hot alkaline solution. This paper discussed the kinetics of alkaline hydrolysis of EHDPET, and the effect of catalyst, bulk ratio and the content of polypropylene grafted maleic anhydride (PP-g-MAH) on the alkaline hydrolysis process. Meanwhile, the morphological change of the outer surface of blend fibers during this process was also investigated by the technology of scanning electron microscope (SEM).展开更多
Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in thi...Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS.展开更多
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH ...The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.展开更多
A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further h...A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further hydrolyzed under free enzyme or immobilized enzyme. The reversed phase high performance liquid chromatography (RP-HPLC) and inductively coupled plasma emission spectrometer (ICP) were applied to determine the contents of amino acids and heavy metals, respectively. The effects of enzyme/substrate(E/S), pH, temperature, and reaction time were investigated in detail. The results indicated that, the optimum conditions for protein hydrolysis were temperature 55℃, pH 10, E/S 9 g/L, and reaction time 8 h, and the highest yield of amino acids was more than 10 g/100 g dry sludge (DS) under free enzyme. Moreover, the security and nutrition were taken into consideration. There were seven kinds of essential amino acids and ten non-essential amino acids in the raw amino acid (RAA) solution, and the contents of heavy metals were lower, living up to Hygienical standard for feeds (China). This technology widens the source of amino acids and makes the extraction of amino acids from EAS more economic and effective.展开更多
[ Objective] This study aimed to characterize the structure of soybean glycinin affected by limited enzymatic hydrolysis. [ Method ] The glycinin was limitedly hydrolyzed by alkaline protease; then the SDS-polyacrylam...[ Objective] This study aimed to characterize the structure of soybean glycinin affected by limited enzymatic hydrolysis. [ Method ] The glycinin was limitedly hydrolyzed by alkaline protease; then the SDS-polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (fTIR) and other means were performed to characterize the glyeinin structure changing during the hydrolysis process. [ Result] SDS-PAGE analysis showed that the subunit contem of glycinin significantly decreased after hydrolysis, and acidic subunits were more susceptible to hydrolysis than alkaline subunits. The scanning electron microscopy revealed that the structure of glycinin powder changed greatly after hydrolysis. The I^TIR results showed that the propor- tions of all conformations of glycinin changed greatly during hydrolysis process. In addition, the protein hydrophobicity and sulfhydryl content were also significantly influenced by hydrolysis. [ Conclusion] The enzymatic hydrolysis greatly changed the conformations of glyeinin, and the change was dependent on the degree of hy- drolysis.展开更多
In order to improve the saccharification rate by acid hydrolysis in the technique for production of ethanol from biomass, in this study, Saccharum spontaneum L. was used as the experimental material to investigate the...In order to improve the saccharification rate by acid hydrolysis in the technique for production of ethanol from biomass, in this study, Saccharum spontaneum L. was used as the experimental material to investigate the rules and technological conditions for two-step acid-hydrolysis saccharification by single factor experiment and orthogonal experiment. According to the results, concentrated sulfttric acid hydrolysis was the first step, with the liquid-solid ratio of 42: 1, sulfuric acid concentration of 70%, hydrolysis time of 20 rain, and hydrolysis temperature of 55 ℃ ; dilute sulphuric acid hydrolysis was the second step, with the liquidsolid ratio of 115: 1, sulfuric acid concentration of 5.5%, hydrolysis time of 155 min, and hydrolysis temperature of 100℃. In two-step acid hydrolysis process, the yield of reducing sugar was 48.78%. The results indicated that two-step acid-hydrolysis saccharification required mild conditions, simple operation and low cost, and led to high reducing sugar yield, exhibiting a broad application prospect.展开更多
Low molecular aromatic compounds are detrimental to the enzymatic hydrolysis of lignocellu-lose.However,the specific role of their functional groups remains unclear.Here,a series of nine aromatic compounds as additive...Low molecular aromatic compounds are detrimental to the enzymatic hydrolysis of lignocellu-lose.However,the specific role of their functional groups remains unclear.Here,a series of nine aromatic compounds as additives were tested to understand their effect on the hydrolysis yield of microcrystalline cellulose(MCC)and alkaline pretreated wheat straw.Based on the results,the inhibition of aldehyde groups on MCC was greater than that of carboxyl groups,whereas for the alkaline pretreated wheat straw case,the inhibitory effect of aldehyde groups was lower than that of carboxyl groups.Increased methoxyl groups of aromatic compounds reduced the inhibitory ef-fect on enzymatic hydrolysis of both substrates.Stronger inhibition of aromatic compounds on MCC hydrolysis was detected in comparison with the alkaline pretreated wheat straw,indicating that the substrate lignin can offset the inhibition to a certain extent.Among all aromatic com-pounds,syringaldehyde with one aldehyde group and two methoxyl groups improved the glucan conversion of the alkaline pretreated wheat straw.展开更多
As one way to eliminate the issues found in the preceding generation,feedstock exploration in second-generation bioethanol production remains an issue,especially for a tropical country such as Indonesia.From exotic fr...As one way to eliminate the issues found in the preceding generation,feedstock exploration in second-generation bioethanol production remains an issue,especially for a tropical country such as Indonesia.From exotic fruit by-products,durian holds a promising perspective that rests on its abundance,superb carbohydrate content and limited usage until now.This work presents the first-ever utilization of durian seeds for sugar production under optimized conditions through alkaline hydrolysis.A simple form of sugar was extracted by varying four parameters,namely substrate loading,NaOH concentration,hydrolysis time and hydrolysis temperature.Response surface methodology based on the Box-Behnken design was employed to outline the most optimum parameter values.Analysis of variance revealed that the quadratic model fit the data appropriately with the order of significance as substrate loading>hydrolysis time>NaOH concentration>hydrolysis temperature.The optimized conditions for reducing sugar yield,as high as 2.140 g/L,corresponded to<50 g/L substrate loading,0.522 M NaOH,60 minutes of hydrolysis time and 80oC hydrolysis temperature.The possible ethanol content of 1.094 g/L was also expected under optimized conditions,demonstrating great potential in second-generation bioethanol production.展开更多
基金supported by the National Natural Science Foundation of China(No.21774139)China,Key Research and Development Program of Shanxi Province,China(No,202102040201009)special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology and the Fund for Shanxi“1331 Project”.Thanks to Ningbo Kejiang Culture Sci.&Tech.Development Co.,Ltd.for the help in schematic drawing。
文摘Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.
基金Thanks to Grain&Corn Engineering Technology Research Center,State Administration of Grain(GA2017004)Science and Technology Research Project of Henan(172102110205 and 182102310676)for funding support.
文摘Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.
基金Supported by the Comprehensive Strategic Cooperation Programs between Guangdong Province and Chinese Academy of Sciences(No.2011A090100008)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-Q214)
文摘A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
文摘Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun into hollow fiber.The fiber was then treated withaqueous NaOH.In this paper,kinetics and mechanism of alkaline hydrolysis of PET,CDP andtheir blend PET/CDP fiber were studied by means of specific area measurement,scantling elec-tron microscopy and other chemical analyses.It was showed that the rate of alkaline hydrolysis isCDP】PET/CDP】PET.Because of blending effect,the alkaline hydrolysis of PET/CDP is dif-ferent from that of PET.CDP phase in the PET/CDP fiber is predominantly hydrolyzed,andhence some pieces of fiber(micro-fiber) fall off the fiber because of etching.
文摘Organic halogens generated in the chlorlnatlon treatment of wool are proven to be acutely toxic to human beings. Legislation on environmental pollution has become more and more stringent in recent years. So the chlorlnation treatment is faced with disuse. Alkaline hydrolysis is adopted to reduce the AOX (Absorbable Organic Halogen) concentrations in the effluents from the chlorlnatlontreatment under 40℃ and pH values 9, 10, 11 and 12. After treatment the reduction of AOX appears approximately 65%.
文摘Cod muscle protein was hydrolyzed by an alkaline protease in our study. The influences of hydrolysis temperature,fish protein concentration,and ratio of protease addition to protein amount on its degree of hy- drolysis (DH) of protein were studied in details by applying dual quadratic rotary combinational design. The final results showed that more than 84% cod muscle protein could be hydrolyzed and recovered. Cod protein hydrolysate thus obtained had a balanced amino acid composition and mainly consisted of small peptides with molecule weight less than 6900 dalton.
文摘Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copolyester that can be rapidly hydro-degraded in the hot alkaline solution. This paper discussed the kinetics of alkaline hydrolysis of EHDPET, and the effect of catalyst, bulk ratio and the content of polypropylene grafted maleic anhydride (PP-g-MAH) on the alkaline hydrolysis process. Meanwhile, the morphological change of the outer surface of blend fibers during this process was also investigated by the technology of scanning electron microscope (SEM).
基金supported by the Key R&D Projects of the Sichuan Provincial Department of Science and Technology in 2022 (No.2022YFS0457)Innovation and Entrepreneurship Training Program for College Students (No.202210649050).
文摘Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS.
基金supported by the Hi-TechResearch and Development Program (863) of China(No. 2007AA06Z326)the Key Projects of National Wa-ter Pollution Control and Management of China (No.2008ZX07315-003, 2008ZX07316-002)the Key Lab-oratory of Environmental Science and Engineering ofJiangsu Province (No. ZD071201).
文摘The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12zz069)Shanghai Municipal Natural Science Foundation,China(No.11ZR1400400)Fundamental Research Funds for the Central Universities,China(No.12D11303)
文摘A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further hydrolyzed under free enzyme or immobilized enzyme. The reversed phase high performance liquid chromatography (RP-HPLC) and inductively coupled plasma emission spectrometer (ICP) were applied to determine the contents of amino acids and heavy metals, respectively. The effects of enzyme/substrate(E/S), pH, temperature, and reaction time were investigated in detail. The results indicated that, the optimum conditions for protein hydrolysis were temperature 55℃, pH 10, E/S 9 g/L, and reaction time 8 h, and the highest yield of amino acids was more than 10 g/100 g dry sludge (DS) under free enzyme. Moreover, the security and nutrition were taken into consideration. There were seven kinds of essential amino acids and ten non-essential amino acids in the raw amino acid (RAA) solution, and the contents of heavy metals were lower, living up to Hygienical standard for feeds (China). This technology widens the source of amino acids and makes the extraction of amino acids from EAS more economic and effective.
基金Supported by 863 Program(2006AA10Z330)New Century High-level Talent Project in Hubei Province[(2003)31]
文摘[ Objective] This study aimed to characterize the structure of soybean glycinin affected by limited enzymatic hydrolysis. [ Method ] The glycinin was limitedly hydrolyzed by alkaline protease; then the SDS-polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (fTIR) and other means were performed to characterize the glyeinin structure changing during the hydrolysis process. [ Result] SDS-PAGE analysis showed that the subunit contem of glycinin significantly decreased after hydrolysis, and acidic subunits were more susceptible to hydrolysis than alkaline subunits. The scanning electron microscopy revealed that the structure of glycinin powder changed greatly after hydrolysis. The I^TIR results showed that the propor- tions of all conformations of glycinin changed greatly during hydrolysis process. In addition, the protein hydrophobicity and sulfhydryl content were also significantly influenced by hydrolysis. [ Conclusion] The enzymatic hydrolysis greatly changed the conformations of glyeinin, and the change was dependent on the degree of hy- drolysis.
基金Supported by Germplasm Collection and Collaborative Research in Central and South America(2011DFB31690)"948"Project of Ministry of Agriculture of China"Introduction of Major Tropical Crop Germplasm Resources"+2 种基金Project of Species Resource Protection of the Ministry of Agriculture"Preservation of Tropical Forage Germplasm Resources"Project of Tropical Crop Germplasm Resource Protection of the Ministry of Agriculture(No.12RZZY-09)Modern Agricultural Talent Support Program of the Ministry of Agriculture"Innovation and Utilization of Tropical Forage"
文摘In order to improve the saccharification rate by acid hydrolysis in the technique for production of ethanol from biomass, in this study, Saccharum spontaneum L. was used as the experimental material to investigate the rules and technological conditions for two-step acid-hydrolysis saccharification by single factor experiment and orthogonal experiment. According to the results, concentrated sulfttric acid hydrolysis was the first step, with the liquid-solid ratio of 42: 1, sulfuric acid concentration of 70%, hydrolysis time of 20 rain, and hydrolysis temperature of 55 ℃ ; dilute sulphuric acid hydrolysis was the second step, with the liquidsolid ratio of 115: 1, sulfuric acid concentration of 5.5%, hydrolysis time of 155 min, and hydrolysis temperature of 100℃. In two-step acid hydrolysis process, the yield of reducing sugar was 48.78%. The results indicated that two-step acid-hydrolysis saccharification required mild conditions, simple operation and low cost, and led to high reducing sugar yield, exhibiting a broad application prospect.
基金thankful to National Natural Science Foundation of China(No.31730106,No.21704045)Jiangsu Provincial Key Research and Development Program,China(No.BE2021368)for supporting the work.
文摘Low molecular aromatic compounds are detrimental to the enzymatic hydrolysis of lignocellu-lose.However,the specific role of their functional groups remains unclear.Here,a series of nine aromatic compounds as additives were tested to understand their effect on the hydrolysis yield of microcrystalline cellulose(MCC)and alkaline pretreated wheat straw.Based on the results,the inhibition of aldehyde groups on MCC was greater than that of carboxyl groups,whereas for the alkaline pretreated wheat straw case,the inhibitory effect of aldehyde groups was lower than that of carboxyl groups.Increased methoxyl groups of aromatic compounds reduced the inhibitory ef-fect on enzymatic hydrolysis of both substrates.Stronger inhibition of aromatic compounds on MCC hydrolysis was detected in comparison with the alkaline pretreated wheat straw,indicating that the substrate lignin can offset the inhibition to a certain extent.Among all aromatic com-pounds,syringaldehyde with one aldehyde group and two methoxyl groups improved the glucan conversion of the alkaline pretreated wheat straw.
基金the Centre of Research and Community Services,Sampoerna University,under internal research grant 022/IRG/SU/AY.2019-2020.
文摘As one way to eliminate the issues found in the preceding generation,feedstock exploration in second-generation bioethanol production remains an issue,especially for a tropical country such as Indonesia.From exotic fruit by-products,durian holds a promising perspective that rests on its abundance,superb carbohydrate content and limited usage until now.This work presents the first-ever utilization of durian seeds for sugar production under optimized conditions through alkaline hydrolysis.A simple form of sugar was extracted by varying four parameters,namely substrate loading,NaOH concentration,hydrolysis time and hydrolysis temperature.Response surface methodology based on the Box-Behnken design was employed to outline the most optimum parameter values.Analysis of variance revealed that the quadratic model fit the data appropriately with the order of significance as substrate loading>hydrolysis time>NaOH concentration>hydrolysis temperature.The optimized conditions for reducing sugar yield,as high as 2.140 g/L,corresponded to<50 g/L substrate loading,0.522 M NaOH,60 minutes of hydrolysis time and 80oC hydrolysis temperature.The possible ethanol content of 1.094 g/L was also expected under optimized conditions,demonstrating great potential in second-generation bioethanol production.