Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of...A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.展开更多
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ...Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho...Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.展开更多
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar...Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.展开更多
The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-bas...The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.展开更多
With the recent increase in network attacks by threats,malware,and other sources,machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features ...With the recent increase in network attacks by threats,malware,and other sources,machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt.However,feature selection is a vital preprocessing stage in machine learning approaches.This paper presents a novel feature selection-based approach,Remora Optimization Algorithm-Levy Flight(ROA-LF),to improve intrusion detection by boosting the ROA performance with LF.The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection:Knowledge discovery and data mining tools competition,network security laboratory knowledge discovery and data mining,intrusion detection evaluation dataset,block out traffic network,Canadian institute of cybersecu-rity and three engineering problems:Cantilever beam design,three-bar truss design,and pressure vessel design.A comparative analysis between developed ROA-LF,particle swarm optimization,salp swarm algorithm,snake opti-mizer,and the original ROA methods is also presented.The results show that the developed ROA-LF is more efficient and superior to other feature selection methods and the three tested engineering problems for intrusion detection.展开更多
With the growth of the discipline of digital communication,the topic has acquiredmore attention in the cybersecuritymedium.The Intrusion Detection(ID)system monitors network traffic to detect malicious activities.The ...With the growth of the discipline of digital communication,the topic has acquiredmore attention in the cybersecuritymedium.The Intrusion Detection(ID)system monitors network traffic to detect malicious activities.The paper introduces a novel Feature Selection(FS)approach for ID.Reptile Search Algorithm(RSA)—is a new optimization algorithm;in this method,each agent searches a new region according to the position of the host,which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate.To overcome these problems,this study introduces an improved RSA approach by integrating Cauchy Mutation(CM)into the RSA’s structure.Thus,the CM can effectively expand search space and enhance the performance of the RSA.The developed RSA-CM is assessed on five publicly available ID datasets:KDD-CUP99,NSL-KDD,UNSW-NB15,CIC-IDS2017,and CIC-IDS2018 and two engineering problems.The RSA-CM is compared with the original RSA,and three other state-of-the-art FS methods,namely particle swarm optimization,grey wolf optimization,and multi-verse optimizer,and quantitatively is evaluated using fitness value,the number of selected optimum features,accuracy,precision,recall,and F1-score evaluationmeasures.The results reveal that the developed RSA-CMgot better results than the other competitive methods applied for FS on the ID datasets and the examined engineering problems.Moreover,the Friedman test results confirm that RSA-CMhas a significant superiority compared to other methods as an FS method for ID.展开更多
Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;howe...Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the imag...The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the image processing techniques,and it is used to identify the disease easily and accurately,especially the micro calcifications are visible on mammography when they are 0.1 mm or bigger,and cancer cells are about 0.03 mm,which is crucial for identifying in the BC area.To achieve this micro calcification in the BC images,it is necessary to focus on the four main steps presented in this work.There are three significant stages of the process assigned to find the BC using a thermal image;the image processing procedures are described below.In the first stage of the process,the Gaussian filter technique is implemented to magnify the screening image.During the second stage,BC detection is separated from the pre-processed image.The Proposed Versatile K-means clustering(VKC)algorithm with segmentation is used to identify the BC detection form of the screening image.The centroids are then recalculated using proposed VKC,which takes the mean of all data points allocated to that centroid’s cluster,lowering the overall intracluster variance in comparison to the prior phase.The“means”in K-means refers to the process of averaging the data and determining a new centroid.This process eliminates unnecessary areas of interest.First,the mammogram screening image information is taken from the patient and begins with the Contiguous Convolutional Neural Network(CCNN)method.The proposed CCNN is used to classify the Micro calcification in the BC spot using the feature values is the fourth stage of the process.The assess the presence of high-definition digital infrared thermography technology and knowledge base and suggests that future diagnostic and treatment services in breast cancer imaging will be developed.The use of sophisticated CCNN techniques in thermography is being developed to attain a greater level of consistency.The implemented(CCNN)technique’s performance is examined with different classification parameters like Recall,Precision,F-measure and accuracy.Finally,the Breast Cancer stages will be classified based on the true positive and true negative values.展开更多
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-...The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment.展开更多
Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extrac...Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extraction of change information.In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map,this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods:Firstly,the SAR image with speckle noise was constructed,and the FFDNet architecture was used to retrain the SAR image,and the network parameters with better effect on speckle noise suppression were obtained.Then the log ratio operator is generated by using the reconstructed image output from the network.Finally,K-means and FCM clustering algorithms are used to analyze the difference images,and the binary map of change detection results is generated.Results:The experimental results have high detection accuracy on Bern and Sulzberger’s real data,which proves the effectiveness of the method.展开更多
In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the ...In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.展开更多
In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the ov...In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金This research was funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+2 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Guangxi Key Laboratory of Spatial Information and Geomatics(Guilin University of Technology)(No.21-238-21-16)Innovation Project of Guangxi Graduate Education(No.YCSW2023352).
文摘A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.
基金supported by the National Natural Science Foundation of China(Project No.51767018)Natural Science Foundation of Gansu Province(Project No.23JRRA836).
文摘Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金funded by the National Natural Science Foundation of China under Grant No.62002103Henan Province Science Foundation for Youths No.222300420058+1 种基金Henan Province Science and Technology Research Project No.232102321064Teacher Education Curriculum Reform Research Priority Project No.2023-JSJYZD-011.
文摘Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
文摘Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.
文摘The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.
文摘With the recent increase in network attacks by threats,malware,and other sources,machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt.However,feature selection is a vital preprocessing stage in machine learning approaches.This paper presents a novel feature selection-based approach,Remora Optimization Algorithm-Levy Flight(ROA-LF),to improve intrusion detection by boosting the ROA performance with LF.The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection:Knowledge discovery and data mining tools competition,network security laboratory knowledge discovery and data mining,intrusion detection evaluation dataset,block out traffic network,Canadian institute of cybersecu-rity and three engineering problems:Cantilever beam design,three-bar truss design,and pressure vessel design.A comparative analysis between developed ROA-LF,particle swarm optimization,salp swarm algorithm,snake opti-mizer,and the original ROA methods is also presented.The results show that the developed ROA-LF is more efficient and superior to other feature selection methods and the three tested engineering problems for intrusion detection.
文摘With the growth of the discipline of digital communication,the topic has acquiredmore attention in the cybersecuritymedium.The Intrusion Detection(ID)system monitors network traffic to detect malicious activities.The paper introduces a novel Feature Selection(FS)approach for ID.Reptile Search Algorithm(RSA)—is a new optimization algorithm;in this method,each agent searches a new region according to the position of the host,which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate.To overcome these problems,this study introduces an improved RSA approach by integrating Cauchy Mutation(CM)into the RSA’s structure.Thus,the CM can effectively expand search space and enhance the performance of the RSA.The developed RSA-CM is assessed on five publicly available ID datasets:KDD-CUP99,NSL-KDD,UNSW-NB15,CIC-IDS2017,and CIC-IDS2018 and two engineering problems.The RSA-CM is compared with the original RSA,and three other state-of-the-art FS methods,namely particle swarm optimization,grey wolf optimization,and multi-verse optimizer,and quantitatively is evaluated using fitness value,the number of selected optimum features,accuracy,precision,recall,and F1-score evaluationmeasures.The results reveal that the developed RSA-CMgot better results than the other competitive methods applied for FS on the ID datasets and the examined engineering problems.Moreover,the Friedman test results confirm that RSA-CMhas a significant superiority compared to other methods as an FS method for ID.
文摘Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
文摘The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the image processing techniques,and it is used to identify the disease easily and accurately,especially the micro calcifications are visible on mammography when they are 0.1 mm or bigger,and cancer cells are about 0.03 mm,which is crucial for identifying in the BC area.To achieve this micro calcification in the BC images,it is necessary to focus on the four main steps presented in this work.There are three significant stages of the process assigned to find the BC using a thermal image;the image processing procedures are described below.In the first stage of the process,the Gaussian filter technique is implemented to magnify the screening image.During the second stage,BC detection is separated from the pre-processed image.The Proposed Versatile K-means clustering(VKC)algorithm with segmentation is used to identify the BC detection form of the screening image.The centroids are then recalculated using proposed VKC,which takes the mean of all data points allocated to that centroid’s cluster,lowering the overall intracluster variance in comparison to the prior phase.The“means”in K-means refers to the process of averaging the data and determining a new centroid.This process eliminates unnecessary areas of interest.First,the mammogram screening image information is taken from the patient and begins with the Contiguous Convolutional Neural Network(CCNN)method.The proposed CCNN is used to classify the Micro calcification in the BC spot using the feature values is the fourth stage of the process.The assess the presence of high-definition digital infrared thermography technology and knowledge base and suggests that future diagnostic and treatment services in breast cancer imaging will be developed.The use of sophisticated CCNN techniques in thermography is being developed to attain a greater level of consistency.The implemented(CCNN)technique’s performance is examined with different classification parameters like Recall,Precision,F-measure and accuracy.Finally,the Breast Cancer stages will be classified based on the true positive and true negative values.
基金National Key R&D Program of China(No.2020YFB1707700)。
文摘The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment.
文摘Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extraction of change information.In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map,this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods:Firstly,the SAR image with speckle noise was constructed,and the FFDNet architecture was used to retrain the SAR image,and the network parameters with better effect on speckle noise suppression were obtained.Then the log ratio operator is generated by using the reconstructed image output from the network.Finally,K-means and FCM clustering algorithms are used to analyze the difference images,and the binary map of change detection results is generated.Results:The experimental results have high detection accuracy on Bern and Sulzberger’s real data,which proves the effectiveness of the method.
基金The National Natural Science Foundation of China(No.61271214,61471152)the Postdoctoral Science Foundation of Jiangsu Province(No.1402023C)the Natural Science Foundation of Zhejiang Province(No.LZ14F010003)
文摘In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.
文摘In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.