Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and ab...Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.展开更多
The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of re...The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.展开更多
To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vi...To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.展开更多
A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO s...A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn 〉 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn 〈 1.0%.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical ...Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai...A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.展开更多
Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three dif...Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.展开更多
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-...In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.展开更多
基金supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
文摘The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.
基金Projects (21207093,51004072) supported by the National Natural Science Foundation of China for YouthProject (LJQ2014023) supported by the Liaoning Excellent Talents in University,China+1 种基金Project (L20150178) supported by the General Scientific Research Projects Foundation of Liaoning Educational Committee,ChinaProject (N140303002) supported by the Fundamental Research Funds for the Central Universities,China
文摘To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)+1 种基金the Henan Provincial College Young Teachers Program,Chinathe Graduate Innovation of Zhengzhou University,China (Grant No. 11L10102)
文摘A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn 〉 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn 〈 1.0%.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金the financial support from Shanxi Province Science and Technology Department(20201101012,202101060301016)the support from the APRC Grant of the City University of Hong Kong(9380086)+5 种基金the TCFS Grant(GHP/018/20SZ)MRP Grant(MRP/040/21X)from the Innovation and Technology Commission of Hong Kongthe Green Tech Fund(202020164)from the Environment and Ecology Bureau of Hong Kongthe GRF grants(11307621,11316422)from the Research Grants Council of Hong KongGuangdong Major Project of Basic and Applied Basic Research(2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002).
文摘A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
文摘Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB2206103)。
文摘In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.