期刊文献+
共找到3,451篇文章
< 1 2 173 >
每页显示 20 50 100
Flexible,thermal processable,self-healing,and fully bio-based starch plastics by constructing dynamic imine network
1
作者 Xiaoqian Zhang Haishan Zhang +2 位作者 Guowen Zhou Zhiping Su Xiaohui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1610-1618,共9页
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ... The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics. 展开更多
关键词 Bioplastic Covalent adaptable networks Schiff base chemistry thermal processability SELF-HEALING
下载PDF
Effect of thermal processing and fermentation with Chinese traditional starters on characteristics and allergenicity of wheat matrix 被引量:1
2
作者 Huan Rao Xi Li Wentong Xue 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期789-794,共6页
Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,an... Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,and hence affect its allergenic properties.However,few reports have focused on the influence of Chinese traditional starter fermentation on wheat allergy.In this study,5 starters from different regions of China were used for fermentation,and protein characteristics were monitored by sodium dodecyl sulfate polyacrylamide gel electropheresis,and immunoreactivity analyzed by immunoassay with allergenic serum was obtained from New Zealand white rabbits.The allergenicity of steamed and baked matrices was also evaluated.The results showed that the allergenicity of wheat dough was basically increased at the beginning and then decreased during fermentation,but specific trends depend on different starters.With the progress of fermentation,especially as pH value decreased to 3.0-4.0,the allergenicity decreased significantly.Baking and steaming can reduce the allergenicity of wheat matrix,but fermentation is not a key factor affecting the allergenic activity of proteins.Our results can provide a theoretical basis for controlling wheat allergenicity in food proces sing or producing hypoallergenic food. 展开更多
关键词 Chinese traditional starter ermentation characteristics thermal processing ALLERGENICITY Wheat matrix
下载PDF
Effects of different thermal processing methods on bioactive components,phenolic compounds,and antioxidant activities of Qingke(highland hull-less barley)
3
作者 Qingyue Hong Guangjing Chen +2 位作者 Zhirong Wang Xuhui Chen Jianquan Kan 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期119-129,共11页
Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),... Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke. 展开更多
关键词 Qingke(highland hull-less barley) thermal processing Antioxidant activity Phenolic compounds Bioactive components
下载PDF
Field observation of the thermal disturbance and freezeback processes of cast-in-place pile foundations in warm permafrost regions 被引量:1
4
作者 Xin Hou Ji Chen +4 位作者 YouQian Liu PengFei Rui JingYi Zhao ShouHong Zhang HaiMing Dang 《Research in Cold and Arid Regions》 CSCD 2023年第1期18-26,共9页
The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm... The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site. 展开更多
关键词 PERMAFROST Cast-in-place pile foundations thermal disturbance Freezeback process Initial concrete temperature
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
5
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve thermal runaway Gas venting behavior thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Application of Spectral Angle Mapper Classification to Discriminate Hydrothermal Alteration in Southwest Birjand, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Image Processing 被引量:5
6
作者 Maryam ABDI Mohammd H. KARIMPOUR 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第5期1289-1296,共8页
The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related ... The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns. 展开更多
关键词 hydrothermal alteration Spectral Angle Mapper Advanced Spaceborne thermal Emission and Reflection Radiometer image process Iran
下载PDF
Point-defect engineering of nanoporous CuBi_(2)O_(4) photocathode via rapid thermal processing for enhanced photoelectrochemical activity 被引量:1
7
作者 Li Qu Runfa Tan +5 位作者 Arumugam Sivanantham Min Je Kang Yoo Jae Jeong Dong Hyun Seo Sungkyu Kim In Sun Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期201-209,I0007,共10页
Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized ... Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting. 展开更多
关键词 NANOPOROUS Copper bismuth oxide Rapid thermal processing Copper vacancy Charge transport
下载PDF
Innovations and applications of the thermal recovery techniques for heavy oil
8
作者 Huanquan Sun Haitao Wang +5 位作者 Xulong Cao Qinglin Shu Zheyuan Fan Guanghuan Wu Yuanliang Yang Yongchao Wu 《Energy Geoscience》 EI 2024年第4期8-19,共12页
Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts ... Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production. 展开更多
关键词 Heavy oil thermal recovery process technology Hybrid thermal production
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
9
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy processABILITY mechanical properties thermal stability
下载PDF
Design of Rapid Thermal Processing for Large Diameter Wafer
10
作者 YANG Hong-guan WEN Li-qun DAI Da-kang YU Biao 《Semiconductor Photonics and Technology》 CAS 2006年第4期265-269,共5页
The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irr... The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irradiation on the edge is approximately the same as the one on the center of the wafer. The magnitude of temperature on the wafer vs. the power of tungsten-halogen lamps is calculated numerically. 展开更多
关键词 Rapid thermal processing Rapid thermal annealing Tungsten-halogen lamp Large diameter wafer
下载PDF
Fabrication and Characterization of Bamboo—Epoxy Reinforced Composite for Thermal Insulation
11
作者 Nandavardhan Reddy Kopparthi Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期15-32,共18页
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca... As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change. 展开更多
关键词 thermal Insulator Rooftiles Hollow Glass Microspheres BAMBOO KAOLIN EPOXY VARTM process thermal Conductivity Mechanical Properties
下载PDF
The Thermal and Mechanical Properties of Ultra-High Molecular Weight Polyethylene/Montmorillonite (UHMWPE/MMT) Nanocomposites Hybrid Gel Using Pressure-Induced Flow (PIF) Processing
12
作者 BABIKER Musa E 张森 +3 位作者 冯小玲 王广成 汤轶飞 余木火 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期158-164,共7页
Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepa... Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepared using gel and pressure-induced flow(PIF) processing methods at a gel weight concentration of 8% UHMWPE with various organoclay contents (0, 0.4, 0.8, 1.2, and 1.6 parts per hundred parts). The interlayer properties of the nanocomposites were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal and mechanical interfacial properties of the nanocomposites were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and the use of a universal test machine (UTM). TEM indicates that the nanocomposites are formed upon dispersion of MMT in the polymer matrix. From the DSC, TGA, and DMA results, we find that the thermal stability of the UHMWPE nanocomposites increases as the MMT content increases. The nanocomposites show higher tensile strengths than pure UHMWPE gel sheet. These findings indicate that the interfacial and mechanical properties are improved by the addition of MMT and PIF processing. 展开更多
关键词 UHMWPE/MMT clay nanocomposites gel processing pressure-induced flow PIF processing mechanical and thermal properties
下载PDF
Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows
13
作者 Fletcher Wadsworth Suresh S. Muknahallipatna Khaled Ksaibati 《Journal of Intelligent Learning Systems and Applications》 2024年第2期107-142,共36页
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst... In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance. 展开更多
关键词 Convolutional Neural Networks Residual Networks Object Detection Image processing thermal Imaging
下载PDF
Effects of laser shock processing,solid solution and aging,and cryogenic treatments on microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2)alloy
14
作者 Guang-lei Liu Yu-hao Cao +5 位作者 Lu-xin Shi Meng-jie Zhang Zhi-qiang Ye Ling Zhao Jian-zhong Zhou Nai-chao Si 《China Foundry》 SCIE CAS 2021年第2期155-162,共8页
The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatmen... The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatment(CT)on both microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2) alloys were studied.Microstructure and crack morphology were then examined by scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).The result showed that,after being subjected to the combination treatment of T6+CT+LSP,the optimal mechanical properties and thermal fatigue performance were obtained for the ZCuAl_(10)Fe_(3)Mn_(2) alloy with the tensile strength,hardness,and elongation of 720 MPa,300.16 HB,and 16%,respectively,and the thermal fatigue life could reach 7,100 cycles when the crack length was 0.1 mm.Moreover,the ZCuAl_(10)Fe_(3)Mn_(2) after combination treatment shows high resistance to oxidation,good adhesion between the matrix and grain boundaries,and dramatically reduced growth rate of crack.During thermal fatigue testing,under the combined action of thermal and alternating stresses,the microstructure around the sample notch oxidized and became loose and porous,which then converted to micro-cracks.Fatigue crack expanded along the grain boundary in the early stage.In the later stage,under the cyclic stress accumulation,the oxidized microstructure separated from the matrix,and the fatigue crack expanded in both intergranular and transgranular ways.The main crack was thick,and the path was meandering. 展开更多
关键词 ZCuAl_(10)Fe_(3)Mn_(2)alloy laser shock processing T6 treatment cryogenic treatment MICROSTRUCTURE thermal fatigue crack initiation and propagation
下载PDF
Microstructure evolution and effect on mechanical property in AZ80 Mg alloy during thermal processing
15
作者 王强 张治民 +1 位作者 李保成 李旭斌 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期324-327,共4页
关键词 AZ80 镁合金 热加工 显微结构 力学性质
下载PDF
Morphology and Growth Process of Bat-like ZnO Crystals by Thermal Evaporation 被引量:1
16
作者 高品 王凯 +2 位作者 黄超 孟路 徐法强 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期369-373,I0002,共6页
A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther- mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, ... A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther- mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron diffraction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor- solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results. 展开更多
关键词 ZNO thermal evaporation NANOSTRUCTURE Growth process
下载PDF
Methane Conversion Using Dielectric Barrier Discharge: Comparison with Thermal Process and Catalyst Effects 被引量:4
17
作者 Antonius Indarto Jae-Wook Choi +1 位作者 Hwaung Lee Hyung Keun Song 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期87-92,共6页
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effe... The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing. 展开更多
关键词 PLASMA dielectric barrier discharge thermal process methane conversion CATALYST
下载PDF
Research on Development of Dolomite-Ferrosilicon Thermal Reduction Process of Magnesium Production 被引量:3
18
作者 李华清 谢水生 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期606-610,共5页
Up to now, the Pedgion magnesium reduction process is the dominating magnesium production process. In 2004, about 98% of raw magnesium is produced by Pedgion magnesium reduction process in China which equals to 60% of... Up to now, the Pedgion magnesium reduction process is the dominating magnesium production process. In 2004, about 98% of raw magnesium is produced by Pedgion magnesium reduction process in China which equals to 60% of the global output. It shows that the dolomite-ferrosilicon thermal reduction process is the most important method to produce magnesium in the world. Limited by the disadvantage of dolomite-ferrosilicon thermal reduction process, the magnesium producing process always followed by relatively severe pollution, while the resource utilizing efficiency keeps very low. With the rapid development of dolomite-ferrosilicon thermal reduction process in China, many research works have been done aiming at the process technology and the reduction theory, and the magnesium producing process has got great evolution. The history of dolomite-ferrosilicon thermal reduction process was introduced; the process character, the merits and which defects were also discussed. Defects in dolomite-ferrosilicon thermal reduction process were expatiated, and feasible method and idea to upgrade the process was put forward. The main problems and the potential troubles hindering the development of magnesium industry were analyzed. Finally, the probability to further improve the thermal reduction process and the effective approaches to develop Chinese magnesium industry were discussed. 展开更多
关键词 Pedgion process dolomite-ferrosilicon thermal reduction process
下载PDF
EVOLUTION OF MICROSTRUCTURES AND HARDNESS DURING CONTINUOUS THERMO-MECHANICAL PROCESSING OF 6201 ALUMINUM ALLOY 被引量:3
19
作者 H. Zhang, Y. Y. Liu, D. S. Peng and C. K. Wang (Department of Materials Science and Engineering, Central South University of Technology, Changsha 410083, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期655-659,共5页
Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that r... Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that rapid solid solution and aging treatment can be effectively combined in one procedure by the strain induced during CTMP. The deformation temperature is ranging from 540* C to 300* C, the hardness increases directly before the 6th pass followed by a slight drop, the amount of precipitates increases with the holding time after deformation. Uniformly distributed and stabilized Mg2Si precipitates, as well as dislocation substructure can be observed on deformed specimens which have been subsequently held at 300℃ for 60 seconds. 展开更多
关键词 6201 aluminum alloy continuous thermo-mechanical processing (CTMP) thermal simulation Mg2Si precipitation SUBSTRUCTURE
下载PDF
Thermal Evolution of Plutons and Uplift Process of the Yanshan Orogenic Belt 被引量:2
20
作者 WU Zhenhan CUI Shengqin +2 位作者 ZHU Dagang FENG Xiangyang MA Yinsheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第1期7-13,共7页
Abstract: Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complic... Abstract: Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complicated, corresponding to the inhomogeneous uplift process of the Yanshan orogenic belt. The Panshan granite cooled fast during 226.48–204.95 Ma at a rate of 10.22°C/Ma after its emplacement at a depth of about 10 km, and its fast uplift occurred in about 96–35 Ma at an average rate of 0.115 mm/a. The Wulingshan pluton cooled fast during 132–127.23 Ma at a rate of 94.34°C/Ma, and its rapid uplift occurred in 86–45 Ma at an average rate of 0.186 mm/a. The Yunmengshan granite cooled fast during 143–120.99 Ma at a rate of 19.51°C/Ma, and its rapid uplift occurred in 106–103.95 Ma and 20–0.0 Ma at a rate of 1.06 mm/a and 0.15 mm/a respectively. The Sihetang granite-gneiss uplifted rapidly since 13 Ma at an average rate of 0.256 mm/a. The Badaling granite uplifted rapidly since 6 Ma at an average rate of 0.556 mm/a. The Cenozoic uplift of the Yanshan Mountains can be well correlated to the rifting process of the surrounding basins. 展开更多
关键词 thermal evolution uplift process thermochronological dating Yanshan orogenic belt
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部