A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)metho...To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.展开更多
In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble ass...In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble assignment strategy, which results in a cyclic Toeplitz midamble-matrix in the linear equation of the received data vectors. A Fast Fourier Transform (FFT)-based algorithm is used to obtain the estimate of the uplink multi-user space-time channels. Furthermore, the estimated space-time channel is applied to the identification of multi-paths for each user, and Direction Of Arrival (DOA) estimation for each path is carried out by using the extracted spatial signature vector. Aside from the simplicity in computation, the proposed di- rection of arrival estimation method can effectively resolve multi-paths regardless of the correlation and angle separations of the multi-paths.展开更多
Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic...Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.展开更多
In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To sol...In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas’ output covariance matrices are esti- mated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matri- ces; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is ef- fective.展开更多
Multiple sources localization is an important technique applied in many areasl such as sonar, radar, biomedical, and geology exploration. High resolution localization needs to employ jointly two sorts of high resoluti...Multiple sources localization is an important technique applied in many areasl such as sonar, radar, biomedical, and geology exploration. High resolution localization needs to employ jointly two sorts of high resolution estimators, time-delay estimator and Direction Of Arrival (DOA) estimator, both of which are tough problems attracting many signal processing researchers. There is also another difficulty that is to pair two groups of parameters in timedelay and DOA domains. In underwater environment, multiple sources localization research faces more difficulties because of the long duration emitted wave, limit aperture of array, and short data record of echoes. In this paper, an new extended ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) method is presented. With a single echo wave, both time-delay and DOA parameters of multiple sources are estimated simultaneously.No additional pairing algorithm is needed to obtain the source locations. The performance of the new estimators and the probability of correct pairing is given by computer simulations, andthe results shows that good estimation can be obtained in low SNR (Signal to Noise Ratio) for multiple sources localization.展开更多
随着5G技术的不断发展,5G蜂窝网络已被广泛应用于城市地区。然而,基于5G的机会信号定位技术中存在着测距精度不高的问题。针对此问题,提出一种改进型5G机会信号定位算法,该算法将多信号分类(multiple signal classification,MUSIC)算法...随着5G技术的不断发展,5G蜂窝网络已被广泛应用于城市地区。然而,基于5G的机会信号定位技术中存在着测距精度不高的问题。针对此问题,提出一种改进型5G机会信号定位算法,该算法将多信号分类(multiple signal classification,MUSIC)算法与改进的早-晚功率锁相环(phase-locked loop,PLL)结合,不仅简化了锁相环结构,更保证了测距精度;同时搭建了基于5G机会信号定位的原理样机,并对改进算法方法的有效性和可行性进行了验证,试验结果表明伪距均方误差为3.03 m。本文所提出的算法不仅结构简单、系统稳定,而且在测距精度上也有一定的优势。展开更多
目标定位是指利用传感信息估计目标在特定坐标系中的空间位置。基于到达时间(Time of Arrival,TOA)或等价的,基于距离的定位方法凭借其高精度特点得到了广泛研究。现有TOA定位方法一般假设传感器位置是精确的,只考虑距离测量噪声。而考...目标定位是指利用传感信息估计目标在特定坐标系中的空间位置。基于到达时间(Time of Arrival,TOA)或等价的,基于距离的定位方法凭借其高精度特点得到了广泛研究。现有TOA定位方法一般假设传感器位置是精确的,只考虑距离测量噪声。而考虑了传感器位置不确定性的文献通常缺少统计学优化与分析,无法得到一致性估计。本文同时考虑距离测量噪声和传感器部署不确定性,将目标位置与传感器坐标均当成未知变量构建最大似然问题。本文首先给出关于观测噪声和传感器空间分布的假设,以保证一致性估计器的存在性。有趣的是,本文分析了最大似然估计性质,证明了其不一定具有一致性。本文进一步变换原始观测方程,构建可最优求解的优化问题。特别地,针对距离测量噪声方差已知情况,构建了含二次目标函数和一个二次等式约束的广义信赖域问题,并给出了其最优解求解算法;针对距离测量噪声方差未知情况,构建了普通线性最小二乘问题,实现目标位置和距离测量噪声方差的同时估计。本文针对两种情况分别提出了相应的偏差消除方法,实现了一致估计,即随着观测数量增加,估计值收敛至真实目标位置。一致性特性使所提算法在大样本观测场景可实现超高精度定位。此外,推导了高斯-牛顿迭代算法,可在观测样本和传感器位置不确定性较小时提高算法定位精度。仿真结果验证了所得理论结果的正确性和所提算法在大样本观测下的优越性。展开更多
超宽带(Ultra-Wideband,UWB)技术能获得比现有无线定位技术更高的测距定位精度.本文主要讨论UWB定位技术的研究和应用,包括TOA/TDOA(Time/Time Difference of Arrival)等UWB定位方法、多径时延估计理论、非视距定位和协作式定位、多带OF...超宽带(Ultra-Wideband,UWB)技术能获得比现有无线定位技术更高的测距定位精度.本文主要讨论UWB定位技术的研究和应用,包括TOA/TDOA(Time/Time Difference of Arrival)等UWB定位方法、多径时延估计理论、非视距定位和协作式定位、多带OFDM(Orthogonal Frequency Division Multiplexing)定位和其他超宽带信号定位方式等方面,对其发展历程和现状进行了充分的叙述和分析,最后指出了仍存在的问题和值得进一步探讨的方向.展开更多
为在欠定条件下估计跳频(frequency hopping,FH)信号二维波达方向(two dimensional direction of arrival,2D-DOA)和极化参数,从而有效辅助FH网台分选和信号识别、跟踪等,提出基于空间极化时频分析的联合估计算法.在建立FH信号极化敏感...为在欠定条件下估计跳频(frequency hopping,FH)信号二维波达方向(two dimensional direction of arrival,2D-DOA)和极化参数,从而有效辅助FH网台分选和信号识别、跟踪等,提出基于空间极化时频分析的联合估计算法.在建立FH信号极化敏感阵列快拍数据模型基础上,推导空间极化时频分布(spatial polarimetric time frequency distributions,SPTFD)的线性时频扩展形式SPSTFT,同时给出一种组合时频分布方法定位各跳(hop)信号在时频面上的自项区域,据此构造各hop的SPTFD和SPSTFT矩阵.利用SPSTFT/SPTFD矩阵中蕴含的信源极化-空域特征信息采取两种不同方法估计2D-DOA和极化参数.新算法无需多维参数寻优和配对,计算量小.仿真结果表明,本算法能在欠定条件下有效估计FH信号2D-DOA和极化参数,SPTFD矩阵法估计精度高,并能处理发生频率碰撞的hop.展开更多
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金supported in part by National Key R&D Program of China under Grants 2020YFB1807602 and 2020YFB1807600National Science Foundation of China(61971217,61971218,61631020,61601167)+1 种基金the Fund of Sonar Technology Key Laboratory(Range estimation and location technology of passive target viamultiple array combination),Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z013)China Postdoctoral Science Foundation(2020M681585).
文摘To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.
基金Supported by the Natural Foundation of Hubei Province, China (No.2005ABA224).
文摘In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble assignment strategy, which results in a cyclic Toeplitz midamble-matrix in the linear equation of the received data vectors. A Fast Fourier Transform (FFT)-based algorithm is used to obtain the estimate of the uplink multi-user space-time channels. Furthermore, the estimated space-time channel is applied to the identification of multi-paths for each user, and Direction Of Arrival (DOA) estimation for each path is carried out by using the extracted spatial signature vector. Aside from the simplicity in computation, the proposed di- rection of arrival estimation method can effectively resolve multi-paths regardless of the correlation and angle separations of the multi-paths.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204)
文摘Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.
基金Supported by the National Natural Science Foundation of China (No.60462002 and No.60302006).
文摘In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas’ output covariance matrices are esti- mated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matri- ces; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is ef- fective.
文摘Multiple sources localization is an important technique applied in many areasl such as sonar, radar, biomedical, and geology exploration. High resolution localization needs to employ jointly two sorts of high resolution estimators, time-delay estimator and Direction Of Arrival (DOA) estimator, both of which are tough problems attracting many signal processing researchers. There is also another difficulty that is to pair two groups of parameters in timedelay and DOA domains. In underwater environment, multiple sources localization research faces more difficulties because of the long duration emitted wave, limit aperture of array, and short data record of echoes. In this paper, an new extended ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) method is presented. With a single echo wave, both time-delay and DOA parameters of multiple sources are estimated simultaneously.No additional pairing algorithm is needed to obtain the source locations. The performance of the new estimators and the probability of correct pairing is given by computer simulations, andthe results shows that good estimation can be obtained in low SNR (Signal to Noise Ratio) for multiple sources localization.
文摘随着5G技术的不断发展,5G蜂窝网络已被广泛应用于城市地区。然而,基于5G的机会信号定位技术中存在着测距精度不高的问题。针对此问题,提出一种改进型5G机会信号定位算法,该算法将多信号分类(multiple signal classification,MUSIC)算法与改进的早-晚功率锁相环(phase-locked loop,PLL)结合,不仅简化了锁相环结构,更保证了测距精度;同时搭建了基于5G机会信号定位的原理样机,并对改进算法方法的有效性和可行性进行了验证,试验结果表明伪距均方误差为3.03 m。本文所提出的算法不仅结构简单、系统稳定,而且在测距精度上也有一定的优势。
文摘目标定位是指利用传感信息估计目标在特定坐标系中的空间位置。基于到达时间(Time of Arrival,TOA)或等价的,基于距离的定位方法凭借其高精度特点得到了广泛研究。现有TOA定位方法一般假设传感器位置是精确的,只考虑距离测量噪声。而考虑了传感器位置不确定性的文献通常缺少统计学优化与分析,无法得到一致性估计。本文同时考虑距离测量噪声和传感器部署不确定性,将目标位置与传感器坐标均当成未知变量构建最大似然问题。本文首先给出关于观测噪声和传感器空间分布的假设,以保证一致性估计器的存在性。有趣的是,本文分析了最大似然估计性质,证明了其不一定具有一致性。本文进一步变换原始观测方程,构建可最优求解的优化问题。特别地,针对距离测量噪声方差已知情况,构建了含二次目标函数和一个二次等式约束的广义信赖域问题,并给出了其最优解求解算法;针对距离测量噪声方差未知情况,构建了普通线性最小二乘问题,实现目标位置和距离测量噪声方差的同时估计。本文针对两种情况分别提出了相应的偏差消除方法,实现了一致估计,即随着观测数量增加,估计值收敛至真实目标位置。一致性特性使所提算法在大样本观测场景可实现超高精度定位。此外,推导了高斯-牛顿迭代算法,可在观测样本和传感器位置不确定性较小时提高算法定位精度。仿真结果验证了所得理论结果的正确性和所提算法在大样本观测下的优越性。
文摘超宽带(Ultra-Wideband,UWB)技术能获得比现有无线定位技术更高的测距定位精度.本文主要讨论UWB定位技术的研究和应用,包括TOA/TDOA(Time/Time Difference of Arrival)等UWB定位方法、多径时延估计理论、非视距定位和协作式定位、多带OFDM(Orthogonal Frequency Division Multiplexing)定位和其他超宽带信号定位方式等方面,对其发展历程和现状进行了充分的叙述和分析,最后指出了仍存在的问题和值得进一步探讨的方向.
文摘为在欠定条件下估计跳频(frequency hopping,FH)信号二维波达方向(two dimensional direction of arrival,2D-DOA)和极化参数,从而有效辅助FH网台分选和信号识别、跟踪等,提出基于空间极化时频分析的联合估计算法.在建立FH信号极化敏感阵列快拍数据模型基础上,推导空间极化时频分布(spatial polarimetric time frequency distributions,SPTFD)的线性时频扩展形式SPSTFT,同时给出一种组合时频分布方法定位各跳(hop)信号在时频面上的自项区域,据此构造各hop的SPTFD和SPSTFT矩阵.利用SPSTFT/SPTFD矩阵中蕴含的信源极化-空域特征信息采取两种不同方法估计2D-DOA和极化参数.新算法无需多维参数寻优和配对,计算量小.仿真结果表明,本算法能在欠定条件下有效估计FH信号2D-DOA和极化参数,SPTFD矩阵法估计精度高,并能处理发生频率碰撞的hop.