In this paper we have investigated the effect of ion nonthermality on nonlinear dust acoustic wave propagation in a complex plasma in presence of weak secondary electron emission from dust grains. Equilibrium dust cha...In this paper we have investigated the effect of ion nonthermality on nonlinear dust acoustic wave propagation in a complex plasma in presence of weak secondary electron emission from dust grains. Equilibrium dust charge in this case is negative. Dusty plasma under our consideration consists of inertialess nonthermal ions, Boltzman distributed primary and secondary electrons and negatively charged inertial dust grains. Both adiabatic and nonadiabatic dust charge variations have been taken into account. Our analysis shows that in case of adiabatic dust charge variation, at a fixed non-zero ion nonthermality increasing secondary electron emission decreases amplitude and increases width of the rarefied dust acoustic soliton whereas for a fixed secondary electron yield increasing ion nonthermality increases amplitude and decreases width of such rarefied dust acoustic soliton. Thus shape of the soliton may be retained if strength of both the secondary electron yield and the ion nonthermality are increased. Nonadiabatic dust charge variation shows that, at fixed non-zero ion nonthermality, increasing secondary electron emission suppresses oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and pronounces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. On the other hand at a fixed value of the secondary electron yield, increasing ion nonthermality enhances oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and reduces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. Thus nature of dust acoustic shock may also remain unchanged if both secondary electron yield and ion nonthermality are increased.展开更多
Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive(negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturb...Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive(negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging,its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic viscosities coefficient of positive(negative) ions η1 and η2 on the electrostatic shocks in Earth's ionosphere are also argued.展开更多
文摘In this paper we have investigated the effect of ion nonthermality on nonlinear dust acoustic wave propagation in a complex plasma in presence of weak secondary electron emission from dust grains. Equilibrium dust charge in this case is negative. Dusty plasma under our consideration consists of inertialess nonthermal ions, Boltzman distributed primary and secondary electrons and negatively charged inertial dust grains. Both adiabatic and nonadiabatic dust charge variations have been taken into account. Our analysis shows that in case of adiabatic dust charge variation, at a fixed non-zero ion nonthermality increasing secondary electron emission decreases amplitude and increases width of the rarefied dust acoustic soliton whereas for a fixed secondary electron yield increasing ion nonthermality increases amplitude and decreases width of such rarefied dust acoustic soliton. Thus shape of the soliton may be retained if strength of both the secondary electron yield and the ion nonthermality are increased. Nonadiabatic dust charge variation shows that, at fixed non-zero ion nonthermality, increasing secondary electron emission suppresses oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and pronounces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. On the other hand at a fixed value of the secondary electron yield, increasing ion nonthermality enhances oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and reduces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. Thus nature of dust acoustic shock may also remain unchanged if both secondary electron yield and ion nonthermality are increased.
基金Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the Research Project No.2015/01/4787
文摘Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive(negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging,its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic viscosities coefficient of positive(negative) ions η1 and η2 on the electrostatic shocks in Earth's ionosphere are also argued.