Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
In this paper,we consider the estimates d of error variance d2=Var(ei) in the linear models Yi=x' iβ+ei(i= 1, 2, ... ). We study the complete convergence of dm2-o2 when the error {ei }is a sequence of identically...In this paper,we consider the estimates d of error variance d2=Var(ei) in the linear models Yi=x' iβ+ei(i= 1, 2, ... ). We study the complete convergence of dm2-o2 when the error {ei }is a sequence of identically distributed p-mixing variables. And we also obtain the better convergence rates when {ei} is not identically distribution展开更多
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi...MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.展开更多
Two mixed linear models are proposed for grouping populations by a dissimilarity coefficent which has two parameters for squared difference of marginal mean and variance component of interaction.Cluster trees can be c...Two mixed linear models are proposed for grouping populations by a dissimilarity coefficent which has two parameters for squared difference of marginal mean and variance component of interaction.Cluster trees can be constructed by the mixed linear model approaches for experimental data with sampling errors within populations or with some missing values.Unweighted pair-group method ( UPGM ) is suggested as fusion method. Sampling variances of estimated dissimilarity coefficient can be obtained by the jackknife procedure.A one-tail t-test is applicable for detecting significance of dissimilarity of populaions within specific group.Unbiasedness and efficiency for estimation of dissimilarity coefficients are proved by Monte Carolo simulations.Worked example from cotton yield data is given for demonstration of the use of these cluster methods.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so...In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.展开更多
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ...Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.展开更多
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and varianc...Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies.展开更多
Impacts of the minimum purchase price policy for grain on the planting area of rice in Hubei Province were analyzed based on a mixed linear model.After the indicator system containing the minimum purchase price policy...Impacts of the minimum purchase price policy for grain on the planting area of rice in Hubei Province were analyzed based on a mixed linear model.After the indicator system containing the minimum purchase price policy and other factors influencing the planting area of rice was constructed,principal component analysis of the system was conducted,and then a mixed linear model where the planting area of rice was as the dependent variable was established.The results show that after the exclusion of the interference from other factors,the minimum purchase price policy for grain had a positive impact on the planting area of rice in Hubei Province.That is,the minimum purchase price policy significantly stimulated the growth of rice planting area in Hubei Province.展开更多
Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, th...Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.展开更多
A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality...A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality rate. United Nations data shows that the infant mortality rate has a descending trend over the period 1990-2010. This study aims to assess the value of the HDI as a predictor of infant mortality rate. Findings in the paper suggest that significant percentage reductions in infant mortality might be possible for countries for controlling the HDI.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
We focus on the development of model selection criteria in linear mixed models. In particular, we propose the model selection criteria following the Mallows’ Conceptual Predictive Statistic (Cp) [1] [2] in linear mix...We focus on the development of model selection criteria in linear mixed models. In particular, we propose the model selection criteria following the Mallows’ Conceptual Predictive Statistic (Cp) [1] [2] in linear mixed models. When correlation exists between the observations in data, the normal Gauss discrepancy in univariate case is not appropriate to measure the distance between the true model and a candidate model. Instead, we define a marginal Gauss discrepancy which takes the correlation into account in the mixed models. The model selection criterion, marginal Cp, called MCp, serves as an asymptotically unbiased estimator of the expected marginal Gauss discrepancy. An improvement of MCp, called IMCp, is then derived and proved to be a more accurate estimator of the expected marginal Gauss discrepancy than MCp. The performance of the proposed criteria is investigated in a simulation study. The simulation results show that in small samples, the proposed criteria outperform the Akaike Information Criteria (AIC) [3] [4] and Bayesian Information Criterion (BIC) [5] in selecting the correct model;in large samples, their performance is competitive. Further, the proposed criteria perform significantly better for highly correlated response data than for weakly correlated data.展开更多
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c...In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.展开更多
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
文摘In this paper,we consider the estimates d of error variance d2=Var(ei) in the linear models Yi=x' iβ+ei(i= 1, 2, ... ). We study the complete convergence of dm2-o2 when the error {ei }is a sequence of identically distributed p-mixing variables. And we also obtain the better convergence rates when {ei} is not identically distribution
文摘MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.
文摘Two mixed linear models are proposed for grouping populations by a dissimilarity coefficent which has two parameters for squared difference of marginal mean and variance component of interaction.Cluster trees can be constructed by the mixed linear model approaches for experimental data with sampling errors within populations or with some missing values.Unweighted pair-group method ( UPGM ) is suggested as fusion method. Sampling variances of estimated dissimilarity coefficient can be obtained by the jackknife procedure.A one-tail t-test is applicable for detecting significance of dissimilarity of populaions within specific group.Unbiasedness and efficiency for estimation of dissimilarity coefficients are proved by Monte Carolo simulations.Worked example from cotton yield data is given for demonstration of the use of these cluster methods.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
基金the Natural Science Foundation of China(10371042,10671038)
文摘In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.
基金Under the auspices of National Natural Science Foundation of China (No. 50809004)
文摘Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
文摘Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies.
基金Supported by the Humanities and Social Sciences Foundation for Young Scholars of Ministry of Education of China(11y3jc630197)
文摘Impacts of the minimum purchase price policy for grain on the planting area of rice in Hubei Province were analyzed based on a mixed linear model.After the indicator system containing the minimum purchase price policy and other factors influencing the planting area of rice was constructed,principal component analysis of the system was conducted,and then a mixed linear model where the planting area of rice was as the dependent variable was established.The results show that after the exclusion of the interference from other factors,the minimum purchase price policy for grain had a positive impact on the planting area of rice in Hubei Province.That is,the minimum purchase price policy significantly stimulated the growth of rice planting area in Hubei Province.
文摘Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.
文摘A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality rate. United Nations data shows that the infant mortality rate has a descending trend over the period 1990-2010. This study aims to assess the value of the HDI as a predictor of infant mortality rate. Findings in the paper suggest that significant percentage reductions in infant mortality might be possible for countries for controlling the HDI.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
文摘We focus on the development of model selection criteria in linear mixed models. In particular, we propose the model selection criteria following the Mallows’ Conceptual Predictive Statistic (Cp) [1] [2] in linear mixed models. When correlation exists between the observations in data, the normal Gauss discrepancy in univariate case is not appropriate to measure the distance between the true model and a candidate model. Instead, we define a marginal Gauss discrepancy which takes the correlation into account in the mixed models. The model selection criterion, marginal Cp, called MCp, serves as an asymptotically unbiased estimator of the expected marginal Gauss discrepancy. An improvement of MCp, called IMCp, is then derived and proved to be a more accurate estimator of the expected marginal Gauss discrepancy than MCp. The performance of the proposed criteria is investigated in a simulation study. The simulation results show that in small samples, the proposed criteria outperform the Akaike Information Criteria (AIC) [3] [4] and Bayesian Information Criterion (BIC) [5] in selecting the correct model;in large samples, their performance is competitive. Further, the proposed criteria perform significantly better for highly correlated response data than for weakly correlated data.
文摘In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.