In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission...In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.展开更多
As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or ...As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.展开更多
Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the stric...Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.展开更多
This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional ...This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional (2D) analysis approach.It shows that continuous-discrete 2D Roesser systems can be developed to describe the entire learning dynamics of both ILC schemes,based on which necessary and sufficient conditions for their stability can be provided.A numerical example is included to validate the theoretical analysis.展开更多
An optimization of device-to-device(D2D) security rate algorithm based on power control is provided to enhance the physical layer security underlaying D2D communication and guarantee the data rate requirement of the c...An optimization of device-to-device(D2D) security rate algorithm based on power control is provided to enhance the physical layer security underlaying D2D communication and guarantee the data rate requirement of the cellular user(CU) at the same time.First,a scenario model is set up,in which an eavesdropper is considered to wiretap the information of D2D transmitters.Then,a secure region of D2D communication is proposed.When D2D communication users reside outside the secure region,the spectrum of CU's is not allowed to share with the D2D communication so as to avoid eavesdropper tapping useful information of D2D communication.When D2D communication users reside inside the secure region,the security rate of D2D is maximized by optimization of the transmitting power of D2D and CU.The simulation results showthat the achieved D2D security rate of the proposed algorithm increases 2.8 bps/Hz when the signal to noise ratio(SNR) is 15 d B,compared with that when the random access algorithm is used.展开更多
An admission control algorithm based on beamforming and interference alignment for device-to-device( D2D) communication underlaying cellular networks is proposed. First, some portion of D2D pairs that are the farthest...An admission control algorithm based on beamforming and interference alignment for device-to-device( D2D) communication underlaying cellular networks is proposed. First, some portion of D2D pairs that are the farthest away from the base station( BS) is selected to perform joint zero-forcing beamforming together with the cellular user equipments( UEs) and is admitted to the cellular network. The interference of the BS transmitting signal to the cellular UEs and the portion of D2D pair is eliminated completely at the same time. Secondly,based on the idea of interference alignment,the definition of channel parallelism is given. The channel parallelism of the remaining D2D pairs which are not involved in joint zero-forcing beamforming is computed by using the channel state information from the BS to the D2D devices. The higher the channel parallelism,the less interference the D2D pair suffers from the BS. Finally,in a descending order of channel parallelism,the remaining D2D pairs are reviewed in succession to determine admission to the cellular network. The algorithm stops when the admission of a D2D pair decreases the system sum rate. Simulation results show that the proposed algorithm can effectively reduce the interference of the BS transmitting signal for D2D pairs and significantly improve system capacity. Furthermore, D2D communication is more applicable to short-range links.展开更多
Spin ordering in a semiconductor has attracted much attention in the community of condensed matter physics. By combining ferromagnetism and the semiconducting nature, systems such as Mn-doped PbSnTe or InAs were found...Spin ordering in a semiconductor has attracted much attention in the community of condensed matter physics. By combining ferromagnetism and the semiconducting nature, systems such as Mn-doped PbSnTe or InAs were found to exhibit tunable magnetic properties responsive to an externally applied electric field. It thus holds great promises for developing novel spintronics with the tuning-knobs such as gate voltage. Conventionally, those systems are often studied in bulk forms and commonly referred to diluted magnetic semiconductor (DMS).展开更多
This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be ...This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based sufficient condition for the existence of such controllers is established. Finally, a numerical example is provided to illustrate the applicability of the proposed method.展开更多
This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New line...This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.展开更多
This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under contro...This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.展开更多
This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). Th...This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.展开更多
This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncerta...This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
基金supported in part by the National Natural Science Foundation of China(61901231)in part by the National Natural Science Foundation of China(61971238)+3 种基金in part by the Natural Science Foundation of Jiangsu Province of China(BK20180757)in part by the open project of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology(KF20202102)in part by the China Postdoctoral Science Foundation under Grant(2020M671480)in part by the Jiangsu Planned Projects for Postdoctoral Research Funds(2020z295).
文摘In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.
基金supported in part by the Project of National Natural Science Foundation of China (61301110)Project of Shanghai Key Laboratory of Intelligent Information Processing, China [grant number IIPL-2014-005]+1 种基金the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Project of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents
文摘As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.
基金supported in part by the Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars(Grant No.BK20170089)in part by the National Natural Science Foundation of China(Grant No.61671474)in part by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(Grant No.BK20180028).
文摘Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.
基金supported by the National Natural Science Foundation of China(No.60727002,60774003,60921001,90916024)the COSTIND(No.A2120061303)the National 973 Program(No.2005CB321902)
文摘This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional (2D) analysis approach.It shows that continuous-discrete 2D Roesser systems can be developed to describe the entire learning dynamics of both ILC schemes,based on which necessary and sufficient conditions for their stability can be provided.A numerical example is included to validate the theoretical analysis.
基金National Natural Science Foundation of China(No.61503251)Natural Science Foundation of Shanghai,China(No.16ZR1424500)
文摘An optimization of device-to-device(D2D) security rate algorithm based on power control is provided to enhance the physical layer security underlaying D2D communication and guarantee the data rate requirement of the cellular user(CU) at the same time.First,a scenario model is set up,in which an eavesdropper is considered to wiretap the information of D2D transmitters.Then,a secure region of D2D communication is proposed.When D2D communication users reside outside the secure region,the spectrum of CU's is not allowed to share with the D2D communication so as to avoid eavesdropper tapping useful information of D2D communication.When D2D communication users reside inside the secure region,the security rate of D2D is maximized by optimization of the transmitting power of D2D and CU.The simulation results showthat the achieved D2D security rate of the proposed algorithm increases 2.8 bps/Hz when the signal to noise ratio(SNR) is 15 d B,compared with that when the random access algorithm is used.
基金The National Natural Science Foundation of China(No.61771132,61471115)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.16KJB510011)+2 种基金the Science and Technology Joint Research and Innovation Foundation of Jiangsu Province(No.BY2016076-13)the Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2018A02)the Research Foundation of Jinling Institute of Technology for Advanced Talents(No.40620044)
文摘An admission control algorithm based on beamforming and interference alignment for device-to-device( D2D) communication underlaying cellular networks is proposed. First, some portion of D2D pairs that are the farthest away from the base station( BS) is selected to perform joint zero-forcing beamforming together with the cellular user equipments( UEs) and is admitted to the cellular network. The interference of the BS transmitting signal to the cellular UEs and the portion of D2D pair is eliminated completely at the same time. Secondly,based on the idea of interference alignment,the definition of channel parallelism is given. The channel parallelism of the remaining D2D pairs which are not involved in joint zero-forcing beamforming is computed by using the channel state information from the BS to the D2D devices. The higher the channel parallelism,the less interference the D2D pair suffers from the BS. Finally,in a descending order of channel parallelism,the remaining D2D pairs are reviewed in succession to determine admission to the cellular network. The algorithm stops when the admission of a D2D pair decreases the system sum rate. Simulation results show that the proposed algorithm can effectively reduce the interference of the BS transmitting signal for D2D pairs and significantly improve system capacity. Furthermore, D2D communication is more applicable to short-range links.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Natural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
文摘Spin ordering in a semiconductor has attracted much attention in the community of condensed matter physics. By combining ferromagnetism and the semiconducting nature, systems such as Mn-doped PbSnTe or InAs were found to exhibit tunable magnetic properties responsive to an externally applied electric field. It thus holds great promises for developing novel spintronics with the tuning-knobs such as gate voltage. Conventionally, those systems are often studied in bulk forms and commonly referred to diluted magnetic semiconductor (DMS).
文摘This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based sufficient condition for the existence of such controllers is established. Finally, a numerical example is provided to illustrate the applicability of the proposed method.
文摘This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.
文摘This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.
文摘This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.
文摘This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.