This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has...The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has certain theoretical research significance and practical application value. The project development is completed in ROS (Robot Operating System). The main tools or frameworks used include AMCL (Adaptive Monte Carlo Localization) package, SLAM (Simultaneous Localization and Mapping) algorithm, Darknet deep learning framework, YOLOv3 (You Only Look Once)algorithm, etc. The main development methods include odometer information fusion, coordinate transformation, localization and mapping, path planning, YOLOv3 model training, function package configuration and deployment. Indoor security robot has two main functions: first, it can complete real-time localization, mapping and navigation of indoor environment through sensors such as lidar and camera;Second, object detection is accomplished through USB camera. Through the detailed analysis and research of the functional design of the two modules, the expected function is finally realized, which can meet the daily use needs.展开更多
The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owi...The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owing to the scarcity of medical and health care resources in some areas,the demand for remote surgery has gradually increased.In this paper,we investigate remote surgery in the healthcare environment.Surgeons can operate robotic arms to perform remote surgery for patients,which substantially facilitates successful surgeries and saves lives.Recently,Kamil et al.proposed a secure protocol for surgery in the healthcare environment.However,after cryptanalyzing their protocol,we deduced that their protocols are vulnerable to temporary value disclosure and insider attacks.Therefore,we design an improved authentication and key agreement protocol for remote surgeries in the healthcare environment.Accordingly,we adopt the real or random(ROR)model and an automatic verification tool Proverif to verify the security of our protocol.Via security analysis and performance comparison,it is confirmed that our protocol is a relatively secure protocol.展开更多
The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operation...The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operations. This research had focused on developing the RPA environment and its future features in order to elaborate on the projected policies based on its comprehensive experiences. The current and previous situations of industry are looking for IT solutions to fully scale their company Improve business flexibility, improve customer satisfaction, improve productivity, accuracy and reduce costs, quick scalability in RPA has currently appeared as an advance technology with exceptional performance. It emphasizes future trends and foresees the evolution of RPA by integrating artificial intelligence, learning of machine and cognitive automation into RPA frameworks. Moreover, it has analyzed the technical constraints, including the scalability, security issues and interoperability, while investigating regulatory and ethical considerations that are so important to the ethical utilization of RPA. By providing a comprehensive analysis of RPA with new future trends in this study, researcher’s ambitions to provide valuable insights the benefits of it on industrial performances from the gap observed so as to guide the strategic decision and future implementation of the RPA.展开更多
A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learnin...A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learning mechanism and it depends on the interactions between the basal ganglia and cerebellum. The whole learning system is composed of evaluation mechanism, action selection mechanism, tropism mechanism. The learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The speed of learning is increased as well as the failure time is reduced with the cerebellum as a supervisor. Convergence can be guaranteed in the sense of entropy. With the proposed motor learning method, a motor learning system for the self-balancing two-wheeled robot has been built using the RBF neural networks as the actor and evaluation function approximator. The simulation experiments showed that the proposed motor learning system achieved a better learning effect, so the motor learning based on the coordination of cerebellum and basal ganglia is effective.展开更多
Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely.The authors propose a novel approach that leverages open-source instant messaging platforms to overco...Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely.The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication(ROSIC).By leveraging features,such as real-time messaging,group chats,end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms,we have developed middleware that establishes a secure and efficient communication system over the Internet.By using instant messaging as the communi-cation interface between users and robots,ROSIC caters to non-technical users,making it easier for them to control robots.The architecture of ROSIC enables various scenarios for robot control,including one user controlling multiple robots,multiple users con-trolling one robot,multiple robots controlled by multiple users,and one user controlling one robot.Furthermore,ROSIC facilitates the interaction of multiple robots,enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and com-mands.Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature,robust encryption,compatibility across multiple platforms and interactive communication capabilities through channels and groups.Notably,the ROSIC is designed to communicate effectively with robot operating system(ROS)-based robots to enhance our ability to control them remotely.展开更多
In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on indu...In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.展开更多
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
文摘The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has certain theoretical research significance and practical application value. The project development is completed in ROS (Robot Operating System). The main tools or frameworks used include AMCL (Adaptive Monte Carlo Localization) package, SLAM (Simultaneous Localization and Mapping) algorithm, Darknet deep learning framework, YOLOv3 (You Only Look Once)algorithm, etc. The main development methods include odometer information fusion, coordinate transformation, localization and mapping, path planning, YOLOv3 model training, function package configuration and deployment. Indoor security robot has two main functions: first, it can complete real-time localization, mapping and navigation of indoor environment through sensors such as lidar and camera;Second, object detection is accomplished through USB camera. Through the detailed analysis and research of the functional design of the two modules, the expected function is finally realized, which can meet the daily use needs.
文摘The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owing to the scarcity of medical and health care resources in some areas,the demand for remote surgery has gradually increased.In this paper,we investigate remote surgery in the healthcare environment.Surgeons can operate robotic arms to perform remote surgery for patients,which substantially facilitates successful surgeries and saves lives.Recently,Kamil et al.proposed a secure protocol for surgery in the healthcare environment.However,after cryptanalyzing their protocol,we deduced that their protocols are vulnerable to temporary value disclosure and insider attacks.Therefore,we design an improved authentication and key agreement protocol for remote surgeries in the healthcare environment.Accordingly,we adopt the real or random(ROR)model and an automatic verification tool Proverif to verify the security of our protocol.Via security analysis and performance comparison,it is confirmed that our protocol is a relatively secure protocol.
文摘The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operations. This research had focused on developing the RPA environment and its future features in order to elaborate on the projected policies based on its comprehensive experiences. The current and previous situations of industry are looking for IT solutions to fully scale their company Improve business flexibility, improve customer satisfaction, improve productivity, accuracy and reduce costs, quick scalability in RPA has currently appeared as an advance technology with exceptional performance. It emphasizes future trends and foresees the evolution of RPA by integrating artificial intelligence, learning of machine and cognitive automation into RPA frameworks. Moreover, it has analyzed the technical constraints, including the scalability, security issues and interoperability, while investigating regulatory and ethical considerations that are so important to the ethical utilization of RPA. By providing a comprehensive analysis of RPA with new future trends in this study, researcher’s ambitions to provide valuable insights the benefits of it on industrial performances from the gap observed so as to guide the strategic decision and future implementation of the RPA.
文摘A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learning mechanism and it depends on the interactions between the basal ganglia and cerebellum. The whole learning system is composed of evaluation mechanism, action selection mechanism, tropism mechanism. The learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The speed of learning is increased as well as the failure time is reduced with the cerebellum as a supervisor. Convergence can be guaranteed in the sense of entropy. With the proposed motor learning method, a motor learning system for the self-balancing two-wheeled robot has been built using the RBF neural networks as the actor and evaluation function approximator. The simulation experiments showed that the proposed motor learning system achieved a better learning effect, so the motor learning based on the coordination of cerebellum and basal ganglia is effective.
文摘Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely.The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication(ROSIC).By leveraging features,such as real-time messaging,group chats,end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms,we have developed middleware that establishes a secure and efficient communication system over the Internet.By using instant messaging as the communi-cation interface between users and robots,ROSIC caters to non-technical users,making it easier for them to control robots.The architecture of ROSIC enables various scenarios for robot control,including one user controlling multiple robots,multiple users con-trolling one robot,multiple robots controlled by multiple users,and one user controlling one robot.Furthermore,ROSIC facilitates the interaction of multiple robots,enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and com-mands.Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature,robust encryption,compatibility across multiple platforms and interactive communication capabilities through channels and groups.Notably,the ROSIC is designed to communicate effectively with robot operating system(ROS)-based robots to enhance our ability to control them remotely.
文摘In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.