期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
The upwind finite difference fractional steps method for combinatorial system of dynamics of fluids in porous media and its application 被引量:9
1
作者 袁益让 《Science China Mathematics》 SCIE 2002年第5期578-593,共16页
For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-d... For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as implicit-explicit difference scheme, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L 2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. Keywords: combinatorial system, multilayer dynamics of fluids in porous media, two-class upwind finite difference fractional steps method, convergence, numerical simulation of energy sources. 展开更多
关键词 combinatorial system multilayer DYNAMICS of FLUIDS in porous media twoclass upwind finite difference fractional steps method convergence numerical simulation of energy sources.
原文传递
The Modified Upwind Finite Difference Fractional Steps Method for Compressible Two-phase Displacement Problem
2
作者 Yi-rangYuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第3期381-396,共16页
For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof differen... For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources. 展开更多
关键词 Two-phase displacement two-dimensional compressibility modified upwind finite difference fractional steps method convergence
原文传递
THE UPWIND FINITE DIFFERENCE FRACTIONAL STEPS METHOD FOR NONLINEAR COUPLED SYSTEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA
3
作者 Yirang YUAN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第4期498-516,共19页
For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod... For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. 展开更多
关键词 Convergence coupled system multilayer dynamics of fluids in porous media nonlinear equations upwind finite difference fractional steps method.
原文传递
NUMERICAL METHOD FOR THREE-DIMENSIONAL NONLINEAR CONVECTION-DOMINATED PROBLEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA
4
作者 袁益让 杜宁 +2 位作者 王文洽 程爱杰 韩玉笈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期683-694,共12页
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract... For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects. 展开更多
关键词 nonlinear convection-dominated dynamics of fluids upwind fractional steps finite difference method convergence numerical simulation
下载PDF
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method
5
作者 Dennis Y.C. LEUNG 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期488-490,共3页
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the ve... A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin(SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity. 展开更多
关键词 finite element method Streamline upwind Petrov-Galerkin method three-step fractional method
下载PDF
The finite difference method for the three-dimensional nonlinear coupled system of dynamics of fluids in porous media 被引量:5
6
作者 YUAN Yirang 《Science China Mathematics》 SCIE 2006年第2期185-211,共27页
For the three-dimensional coupled system of multilayer dynamics of fluids in porous media, the second-order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some tec... For the three-dimensional coupled system of multilayer dynamics of fluids in porous media, the second-order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method,multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in l2 norm are derived to determine the error in the second-order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources. 展开更多
关键词 multilayer coupled system NONLINEAR equations upwind finite difference fractional steps convergence numerical simulation.
原文传递
三维非线性对流扩散问题的数值方法在渗流力学的应用 被引量:3
7
作者 袁益让 杜宁 +2 位作者 王文洽 程爱杰 韩玉笈 《应用数学和力学》 CSCD 北大核心 2006年第5期605-614,共10页
对三维非线性对流扩散问题提出一类适合并行计算的二阶迎风分数步差分格式,采用分数步技术,将三维问题化为连续解3个一维问题计算.利用变分形式、能量方法、差分算子乘积交换性、高阶差分算子的分解、微分方程先验估计的理论和技巧,得... 对三维非线性对流扩散问题提出一类适合并行计算的二阶迎风分数步差分格式,采用分数步技术,将三维问题化为连续解3个一维问题计算.利用变分形式、能量方法、差分算子乘积交换性、高阶差分算子的分解、微分方程先验估计的理论和技巧,得到收敛性的最佳阶的误差估计.该方法已成功的应用油资源运移聚集渗流力学数值模拟计算、海水入侵预测和防治的工程实践中. 展开更多
关键词 非线性对流扩散 渗流力学 迎风分数步 差分方法 收敛性 油资源数值模拟
下载PDF
半导体瞬态问题计算方法的新进展 被引量:8
8
作者 袁益让 《计算物理》 EI CSCD 北大核心 2009年第3期317-324,共8页
综述三维热传导型半导体瞬态问题计算方法的新进展.数学模型是一类由四个方程组成的非线性耦合对流-扩散偏微分方程组的初边值问题.重点研究特征分数步差分方法,修正迎风分数步差分方法,特征交替方向变网格有限元方法,区域分裂及并行计算.
关键词 半导体器件 特征和迎风差分 分数步法 交替方向和区域分裂 数值分析
下载PDF
计算石油地质等领域的一些新进展 被引量:6
9
作者 袁益让 《计算物理》 CSCD 北大核心 2003年第4期283-290,共8页
 主要综述应用计算数学、渗流力学的数值方法和理论研究油田勘探开发中的数值模拟、核废料污染问题的数值方法、海水入侵的预测和防治,半导体瞬态问题的数值模拟.问题的数学模型是一类非线性耦合对流 扩散偏微分方程组的初边值问题.重...  主要综述应用计算数学、渗流力学的数值方法和理论研究油田勘探开发中的数值模拟、核废料污染问题的数值方法、海水入侵的预测和防治,半导体瞬态问题的数值模拟.问题的数学模型是一类非线性耦合对流 扩散偏微分方程组的初边值问题.重点讨论特征差分方法、特征有限元法、分数步数值方法及其理论分析. 展开更多
关键词 石油地质 数学模型 特征差分方法 特征有限元法 分数步法 数值计算 油田
下载PDF
河口近岸区三维潮流及悬沙扩散的一种分步模型 被引量:3
10
作者 董文军 《天津大学学报》 EI CAS CSCD 1999年第3期346-349,共4页
在建立模型时,对三维浅海流体动力学方程进行时间分步计算.在垂直方向上引用σ坐标变换,并采用隐式有限差分格式;在水平方向上,采用迎风有限元方法进行数值离散.应用本模式与相应的理论公式做了对比计算。
关键词 分步模型 河口 浅海 潮流 悬沙扩散 近岸区
下载PDF
粘性流体大幅晃动的ALE迎风有限元方法 被引量:1
11
作者 岳宝增 彭武 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第3期279-282,共4页
将任意的拉格朗日-欧拉(arbitraryLagrange-Euler,ALE)描述引入到速度修正格式中,利用迎风有限元法推导了数值离散方程,给出了ALE描述下的分步有限元计算格式,通过对不可压粘性流体大幅晃动问题进行数值模拟,证实了本文方法的有效性和... 将任意的拉格朗日-欧拉(arbitraryLagrange-Euler,ALE)描述引入到速度修正格式中,利用迎风有限元法推导了数值离散方程,给出了ALE描述下的分步有限元计算格式,通过对不可压粘性流体大幅晃动问题进行数值模拟,证实了本文方法的有效性和可靠性. 展开更多
关键词 自由液面 迎风格式 ALE分步有限元方法 大幅晃动
下载PDF
三维叠后差分偏移的因子分解法 被引量:2
12
作者 张关泉 侯唯健 《地球物理学报》 SCIE EI CSCD 北大核心 1996年第3期382-391,共10页
提出一种三维叠后偏移的一步差分方法,称为因子分解法.差分格式是二阶精度的隐式格式,求解方法与通常一步差分偏移不同,不采用分步法交替求解。x-y方向的二维问题,而是采用因子分解法,将求解的差分方程分解为向前因子和向后因... 提出一种三维叠后偏移的一步差分方法,称为因子分解法.差分格式是二阶精度的隐式格式,求解方法与通常一步差分偏移不同,不采用分步法交替求解。x-y方向的二维问题,而是采用因子分解法,将求解的差分方程分解为向前因子和向后因子,从而在一次扫描中同时完成x-y方向的正递归和反递归.为了抑制边界反射,采用了吸收边界条件,给出了理论合成记录和实际记录的偏移结果,数值试验表明该方法具有较好的精度和较高的计算效率. 展开更多
关键词 三维叠后偏移 因子分解法 地球物理勘探
下载PDF
油水渗流动边值问题的迎风差分方法
13
作者 袁益让 李长峰 +1 位作者 杨成顺 韩玉笈 《应用数学和力学》 EI CSCD 北大核心 2009年第11期1281-1294,共14页
可压缩可混溶油、水渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.对二维有界域的动边值问题提出一类新的迎风差分格式... 可压缩可混溶油、水渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.对二维有界域的动边值问题提出一类新的迎风差分格式,应用区域变换、变分形式、能量方法、差分算子乘积交换性理论、高阶差分算子的分解、微分方程先验估计的理论和技巧,得到了最佳误差估计结果.该方法已成功应用到油资评估的数值模拟中.它对这一领域的模型分析,数值方法和软件研制均有重要的价值. 展开更多
关键词 可压缩渗流 动边界 迎风分数步差分 最佳误差估计 应用
下载PDF
三维动边值问题的迎风差分方法
14
作者 袁益让 李长峰 《数学物理学报(A辑)》 CSCD 北大核心 2012年第2期271-289,共19页
可压缩可混溶油、水三维渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.该文对有界域的动边值问题提出一类新的二阶修... 可压缩可混溶油、水三维渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.该文对有界域的动边值问题提出一类新的二阶修正迎风差分格式,应用区域变换、变分形式、能量方法、差分算子乘积交换性理论、高阶差分算子的分解、微分方程先验估计的理论和技巧,得到了最佳l^2误差估计结果.该方法已成功应用到油资评估的数值模拟中.它对这一领域的模型分析,数值方法和软件研制均有重要的价值. 展开更多
关键词 可压缩渗流 三维动边界 迎风分数步差分 最佳l^2 估计 实际应用
下载PDF
一组水动力学方程组的分步流线差分解法
15
作者 肖进胜 孙乐林 《数学杂志》 CSCD 1999年第2期203-208,共6页
这篇文章针对一组平面二维水动力学方程组提出的分步流线差分法.用破开算子法将其分成两部分,在空间上用三角形单元的分片线性插值来逼近,在时间步上用沿流线的差分来逼近.
关键词 分步法 有限元 水动力学方程 流线差分法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部