Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the pe...Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the period 1959-2008. The result indicates that change of temperature in the region has an obvious corresponding relationship with global warming and the changes of annual average temperature in each subregion in the region have been presenting a fluctuant and rising state in the past 50 years. However the change of precipitation is more intricate than the change of temperature in the region because of the influences of the different geographical positions and environments in various areas, and the change of annual precipitation in the main runoff-producing area has been presenting a fluctuant and decreasing state in the past 50 years. And there is a remarkable nonlinear correlativity between runoff and precipitation and temperature in the region. The runoff in the region has been decreasing continuously since 1990 because the precipitation in the main run-off-producing area obviously decreases and the annual average temperature continuously rises. As a whole, the runoff in each subregion of the headwater region of the Yellow River is quite sensitive to precipitation change, while the runoff in the subregion above Jimai is more sensitive to temperature change than that in the others in the region, correspondingly.展开更多
Maintenance of steady streamflow is a critical attribute of the continental river systems for safeguarding downstream ecosystems and agricultural production.Global climate change imposes a potential risk to water supp...Maintenance of steady streamflow is a critical attribute of the continental river systems for safeguarding downstream ecosystems and agricultural production.Global climate change imposes a potential risk to water supply from the headwater by changing the magnitude and frequency of precipitation and evapotranspiration in the region.To determine if and to what extent the recent climate changes affected streamflow in major river systems,we examined the pattern of temporal variations in precipitation,temperature,evapotranspiration and changes in runoff discharge during 1958–2017 in the headwater region of the Yellow River in northeastern Tibetan Plateau.We identified 1989 as the turning point for a statistically significant 14% reduction in streamflow discharge(P < 0.05) for the period 1989–2017 compared with 1958–1988,approximately coinciding with changes in the monthly distribution but not the interannual variations of precipitation,and detected a mismatch between precipitation and runoff after 2000.Both annual precipitation and runoff discharge displayed fourand eight-year cyclic patterns of changes for the period 1958–1988,and a six-year cyclic pattern of changes for the period 1989–2017,with two intensified two-year cyclic patterns in the changes of precipitation and a three-year cyclic pattern in the change of runoff further detected for the later period.Our results indicate that the temporal changes in runoff are not strictly consistent with the temporal variations of precipitation in the headwater region of Yellow River during the period 1958–2017.In particular,a full recovery in annual precipitation was not reflected in a full recovery in runoff toward the end of the study period.While a review of literature yielded no apparent evidence of raised evapotranspiration in the region due to recent warming,we draw attention to increased local retention of rainwater as a possible explanation of differential changes in precipitation and runoff.展开更多
Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs ha...Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs have been implemented by the Chinese government to restore degraded grasslands in this region, and major function-oriented zones(MFOZs) applied in 2014, have divided the region into three zones, i.e., the development prioritized, restricted, and prohibited zones, based on environmental carrying capacity, as well as the utilization intensity of grassland. This study identified various restoration approaches adopted in different MFOZs, and assessed the effects of the approaches in order to determine the most effective approaches. We collected 195 questionnaires from herders to analyze the effects of the various restoration approaches, and additional remote sensing and statistical data were also used for the analysis. Four distinct differences in the ecological and socioeconomic characteristics were found in three MFOZs.(1) Five technologies were applied in the study areas.(2) The grassland recovery rate was higher in development prioritized zones than in restricted and prohibited zones during 2000 and 2016, and especially high and very high coverage grasslands increased in the areas where crop-forage cultivation and grass seeding dominated in the prioritized zones.(3) The net income of households in the development prioritized zone was the best of all three zones.(4) The degree of awareness and willingness of herders to restore grassland was more positive in development prioritized zones than in restricted zones, where more herders adopted approaches with a combination of enclosure + deratization + crop-forage cultivation + warm shed. Based on these findings, it is recommended that decision-makers need to increase their efforts to narrow the gap of willingness and behavior between herders and other stakeholders, such as researchers and grassland administrators, in order to ensure grassland sustainability in the MFOZs. It is also beneficial to understand the effects of restoration on the ecological carrying capacities in different zones depending on the different development goals.展开更多
利用2015-2016年8月采集的黄河源区草地生物量数据和MODIS卫星遥感资料,结合农业多光谱相机(agricultural digital camera,ADC)获取的植被指数数据,比较分析3种_(ADC)植被指数(NDVI_(ADC)、SAVI_(ADC)和GNDVI_(ADC))与野外实测草地地上...利用2015-2016年8月采集的黄河源区草地生物量数据和MODIS卫星遥感资料,结合农业多光谱相机(agricultural digital camera,ADC)获取的植被指数数据,比较分析3种_(ADC)植被指数(NDVI_(ADC)、SAVI_(ADC)和GNDVI_(ADC))与野外实测草地地上生物量(above-ground biomass,AGB)数据的相关性,筛选出适合构建草地AGB反演模型的_(ADC)植被指数;结合MODIS NDVI(记作NDVIMOD)构建草地地上生物量反演模型,采用留一法交叉验证方法评价各模型精度,确立适宜模拟研究区草地AGB的最优模型;并利用NDVI_(ADC)校正NDVI_(MOD),获得高分辨率、高精度的草地AGB遥感监测改进模型。结果表明,1)基于_(ADC)获取的3种植被指数中,NDVI_(ADC)与高寒草地地上生物量关系最为密切,其次为SAVI_(ADC),拟合效果最差的是GNDVI_(ADC);2)基于NDVI_(ADC)建立的草地AGB监测模型的精度(RMSEP介于383.55~393.18kg DW/hm2;r范围为0.65~0.66)远高于NDVI_(MOD)的模型精度(RMSEP介于421.08~427.00kg DW/hm^2;r范围为0.55~0.58),NDVI_(ADC)反演得到的草地AGB更接近于黄河源区草地实际生物量,且相较于NDVI_(ADC),NDVI_(MOD)的样本值整体偏高;3)在NDVI_(ADC)构建的4类模型中,线性和乘幂模型模拟研究区草地AGB的能力较好,但线性模型精度更高(y=3248.93×NDVI_(ADC)-305.59,RMSEP=383.55kg DW/hm^2,r=0.66),该模型为黄河源区草地生物量的估测提供了一个新型且易操作的方法;4)NDVI_(ADC)与NDVIMOD相关性较高,利用NDVI_(ADC)校正NDVI_(MOD)可以改进草地AGB遥感反演模型,优化模型为y=2455.54×NDVI_(MOD)-301.69。该模型可在大尺度范围内估测黄河源区的草地生物量,且模型精度接近于地表测量法的监测精度。展开更多
基金Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328 No.J0930003/J0109 Key Program of National Natural Science Foundation of China, No.907020011 No.INFO- 115-C01-SDB2-03+1 种基金 National Natural Science Foundation of China, No.40777047 No.40675066
文摘Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the period 1959-2008. The result indicates that change of temperature in the region has an obvious corresponding relationship with global warming and the changes of annual average temperature in each subregion in the region have been presenting a fluctuant and rising state in the past 50 years. However the change of precipitation is more intricate than the change of temperature in the region because of the influences of the different geographical positions and environments in various areas, and the change of annual precipitation in the main runoff-producing area has been presenting a fluctuant and decreasing state in the past 50 years. And there is a remarkable nonlinear correlativity between runoff and precipitation and temperature in the region. The runoff in the region has been decreasing continuously since 1990 because the precipitation in the main run-off-producing area obviously decreases and the annual average temperature continuously rises. As a whole, the runoff in each subregion of the headwater region of the Yellow River is quite sensitive to precipitation change, while the runoff in the subregion above Jimai is more sensitive to temperature change than that in the others in the region, correspondingly.
基金National Key Research and Development Program of China,No.2016YFC0502104。
文摘Maintenance of steady streamflow is a critical attribute of the continental river systems for safeguarding downstream ecosystems and agricultural production.Global climate change imposes a potential risk to water supply from the headwater by changing the magnitude and frequency of precipitation and evapotranspiration in the region.To determine if and to what extent the recent climate changes affected streamflow in major river systems,we examined the pattern of temporal variations in precipitation,temperature,evapotranspiration and changes in runoff discharge during 1958–2017 in the headwater region of the Yellow River in northeastern Tibetan Plateau.We identified 1989 as the turning point for a statistically significant 14% reduction in streamflow discharge(P < 0.05) for the period 1989–2017 compared with 1958–1988,approximately coinciding with changes in the monthly distribution but not the interannual variations of precipitation,and detected a mismatch between precipitation and runoff after 2000.Both annual precipitation and runoff discharge displayed fourand eight-year cyclic patterns of changes for the period 1958–1988,and a six-year cyclic pattern of changes for the period 1989–2017,with two intensified two-year cyclic patterns in the changes of precipitation and a three-year cyclic pattern in the change of runoff further detected for the later period.Our results indicate that the temporal changes in runoff are not strictly consistent with the temporal variations of precipitation in the headwater region of Yellow River during the period 1958–2017.In particular,a full recovery in annual precipitation was not reflected in a full recovery in runoff toward the end of the study period.While a review of literature yielded no apparent evidence of raised evapotranspiration in the region due to recent warming,we draw attention to increased local retention of rainwater as a possible explanation of differential changes in precipitation and runoff.
基金The National Key Research and Development Program of China(2016YFC0501906,2016YFC0503700).
文摘Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs have been implemented by the Chinese government to restore degraded grasslands in this region, and major function-oriented zones(MFOZs) applied in 2014, have divided the region into three zones, i.e., the development prioritized, restricted, and prohibited zones, based on environmental carrying capacity, as well as the utilization intensity of grassland. This study identified various restoration approaches adopted in different MFOZs, and assessed the effects of the approaches in order to determine the most effective approaches. We collected 195 questionnaires from herders to analyze the effects of the various restoration approaches, and additional remote sensing and statistical data were also used for the analysis. Four distinct differences in the ecological and socioeconomic characteristics were found in three MFOZs.(1) Five technologies were applied in the study areas.(2) The grassland recovery rate was higher in development prioritized zones than in restricted and prohibited zones during 2000 and 2016, and especially high and very high coverage grasslands increased in the areas where crop-forage cultivation and grass seeding dominated in the prioritized zones.(3) The net income of households in the development prioritized zone was the best of all three zones.(4) The degree of awareness and willingness of herders to restore grassland was more positive in development prioritized zones than in restricted zones, where more herders adopted approaches with a combination of enclosure + deratization + crop-forage cultivation + warm shed. Based on these findings, it is recommended that decision-makers need to increase their efforts to narrow the gap of willingness and behavior between herders and other stakeholders, such as researchers and grassland administrators, in order to ensure grassland sustainability in the MFOZs. It is also beneficial to understand the effects of restoration on the ecological carrying capacities in different zones depending on the different development goals.