期刊文献+
共找到7,597篇文章
< 1 2 250 >
每页显示 20 50 100
Emerging potential of ubiquitin-specific proteases and ubiquitinspecific proteases inhibitors in breast cancer treatment 被引量:1
1
作者 Mei-Ling Huang Guang-Tai Shen Nan-Lin Li 《World Journal of Clinical Cases》 SCIE 2022年第32期11690-11701,共12页
Breast cancer is the most frequently diagnosed cancer in women,accounting for 30%of new diagnosing female cancers.Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer... Breast cancer is the most frequently diagnosed cancer in women,accounting for 30%of new diagnosing female cancers.Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes.As the primary deubiquitinases in the family,ubiquitin-specific peptidases(USPs)are thought to represent potential therapeutic targets.The role of ubiquitin and ubiquitination in breast cancer,as well as the classification and involvement of USPs are discussed in this review,such as USP1,USP4,USP7,USP9X,USP14,USP18,USP20,USP22,USP25,USP37,and USP39.The reported USPs inhibitors investigated in breast cancer were also summarized,along with the signaling pathways involved in the investigation and its study phase.Despite no USP inhibitor has yet been approved for clinical use,the biological efficacy indicated their potential in breast cancer treatment.With the improvements in phenotypic discovery,we will know more about USPs and USPs inhibitors,developing more potent and selective clinical candidates for breast cancer. 展开更多
关键词 ubiquitin-specific proteases USPs inhibitors Breast cancer Review
下载PDF
Ubiquitin-specific protease 21 promotes tumorigenicity and stemness of colorectal cancer by deubiquitinating and stabilizing ZEB1
2
作者 Jun-Jun Lin Ye-Cai Lu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期1006-1018,共13页
BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a... BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a facilitator.Interestingly,the promotive function of USP21 has also discovered in the progression of CRC.ZEB1 has illustrated to be modulated by USP7,USP22 and USP51 in cancers.However,the regulatory functions of USP21 on ZEB1 in CRC progression need more invest-igations.AIM To investigate the relationship between USP21 and ZEB1 in CRC progression.METHODS The mRNA and protein expressions were assessed through RT-qPCR,western blot and IHC assay.The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays.The cell proliferation was detected through colony formation assay.The cell migration and invasion abilities were determined through Transwell assay.The stemness was tested through sphere formation assay.The tumor growth was evaluated through in vivo mice assay.RESULTS In this work,USP21 and ZEB1 exhibited higher expression in CRC,and resulted into poor prognosis.Moreover,the interaction between USP21 and ZEB1 was further investigated.It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level.In addition,USP21 streng-thened cell proliferation,migration and stemness through regulating ZEB1.At last,through in vivo assays,it was illustrated that USP21/ZEB1 axis aggravated tumor growth.CONCLUSION For the first time,these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1.This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC. 展开更多
关键词 ubiquitin-specific protease 21 ZEB1 STEMNESS Colorectal cancer
下载PDF
Novel mutations in ubiquitin-specific protease 26 gene might cause spermatogenesis impairment and male infertility 被引量:11
3
作者 Jie Zhang Shu-Dong Qiu +5 位作者 Sheng-Bin Li Dang-Xia Zhou Hong Tian Yong-Wei Huo Ling Ge Qiu-Yang Zhang 《Asian Journal of Andrology》 SCIE CAS CSCD 2007年第6期809-814,共6页
Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was perfor... Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was performed. Infertility factors such as immunological, infectious and biochemical disorders were examined to select patients with idiopathic infertility. DNA was isolated from peripheral blood of the selected patients and control population, which were examined for mutations using polymerase chain reaction-single strand conformation polymorphism analysis. Furthermore, nucleotide sequences were sequenced in some patients and controls. Results: Of 41 infertile men, 9 (22.0%, P = 0.01) had changes in USP26 gene on the X chromosome. A compound mutation (364insACA; 460G→A) was detected in 8 patients (19.5%, P = 0.01) and a 1044T→A substitution was found in 1 patient (2.4%, P 〉 0.05). All three variations led to changes in the coding amino acids. Two substitutions predict some changes: 460G→ A changes a valine into an isoleucine, and 1044T → A substitutes a leucine for a phenylalanine. Another insertion of three nucleotides ACA causes an insertion of threonine. No other changes were found in the remaining patients and fertile controls. Conclusion: The USP26 gene might be of importance in male reproduction. Mutations in this gene might be associated with male infertility, and might negatively affect testicular function. Further research on this issue is in progress. 展开更多
关键词 male INFERTILITY deubiquitination enzymes ubiquitin-specific protease 26
下载PDF
Ubiquitin-specific protease 15 contributes to gastric cancer progression by regulating the Wnt/β-catenin signaling pathway 被引量:5
4
作者 Min Zhong Ling Zhou +5 位作者 Zhi Fang Yang-Yang Yao Jian-Ping Zou Jian-Ping Xiong Xiao-Jun Xiang Jun Deng 《World Journal of Gastroenterology》 SCIE CAS 2021年第26期4221-4235,共15页
BACKGROUND Ubiquitin-specific protease 15(USP15)is an important member of the ubiquitinspecific protease family,the largest deubiquitinase subfamily,whose expression is dysregulated in many types of cancer.However,the... BACKGROUND Ubiquitin-specific protease 15(USP15)is an important member of the ubiquitinspecific protease family,the largest deubiquitinase subfamily,whose expression is dysregulated in many types of cancer.However,the biological function and the underlying mechanisms of USP15 in gastric cancer(GC)progression have not been elucidated.AIM To explore the biological role and underlying mechanisms of USP15 in GC progression.METHODS Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC.Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC.A loss-and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis.RNA sequencing,immunofluorescence,and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions.RESULTS USP15 was up-regulated in GC tissue and cell lines.The expression level of USP15 was positively correlated with clinical characteristics(tumor size,depth of invasion,lymph node involvement,tumor-node-metastasis stage,perineural invasion,and vascular invasion),and was related to poor prognosis.USP15 knockdown significantly inhibited cell proliferation,invasion and epithelialmesenchymal transition(EMT)of GC in vitro,while overexpression of USP15 promoted these processes.Knockdown of USP15 inhibited tumor growth in vivo.Mechanistically,RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC.Western blotting confirmed that USP15 silencing led to significant down-regulation ofβ-catenin and Wnt/β-catenin downstream genes(c-myc and cyclin D1),while overexpression of USP15 yielded an opposite result and USP15 mutation had no change.Immunofluorescence indicated that USP15 promoted nuclear translocation ofβ-catenin,suggesting activation of the Wnt/β-catenin signaling pathway,which may be the critical mechanism promoting GC progression.Finally,rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/β-catenin pathway.CONCLUSION USP15 promotes cell proliferation,invasion and EMT progression of GC via regulating the Wnt/β-catenin pathway,which suggests that USP15 is a novel potential therapeutic target for GC. 展开更多
关键词 ubiquitin-specific protease 15 Gastric cancer WNT/Β-CATENIN Cell proliferation Cell invasion Epithelial-mesenchymal transition
下载PDF
Association of 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 gene and male infertility: a meta-analysis 被引量:2
5
作者 Jia-Dong Xia Jie Chen +4 位作者 You-Feng Han Hai Chen Wen Yu Yun Chen Yu-Tian Dai 《Asian Journal of Andrology》 SCIE CAS CSCD 2014年第5期720-724,I0008,共6页
Whether the 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis bas... Whether the 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis based on the most recent studies. Eligible studies were screened by using PubMed and Embase. Pooled odd ratio (OR) with 95% confidence interval (CI) was calculated with fixed effect models. Ten studies with 1603 patients and 2505 controls were included, Overall, the results indicated that there was an association between the haplotype and male infertile risk (OR = 1.74, 95% CI: 1.09-2.77). The OR calculated based on the five studies in Asia and three in Europe was 1.96 (95% CI: 1,05-3.67) and 1.54 (95% Ch 0.75-3.16) respectively, however, the OR was 0.86 (95% Ch 0.05-15,29) based on the two investigations in America. In addition, the data from the patients with azoospermia (AZO) showed an increased pooled OR of 2.35 (95% Cl: 1.22-4.50). In contrast, the studies with oligoasthenoteratozoospermia (OAT) exhibited that the pooled OR was 0,97 (95% Ch 0.43-2.16). Our analyses indicate that there is an association of alteration in USP26 with male infertility, especially in AZO and Asian population. 展开更多
关键词 HAPLOTYPE male infertility META-ANALYSIS ubiquitin-specific protease 26
下载PDF
Ubiquitin-specific protease 22 enhances intestinal cell proliferation and tissue regeneration after intestinal ischemia reperfusion injury 被引量:5
6
作者 An-Long Ji Tong Li +5 位作者 Guo Zu Dong-Cheng Feng Yang Li Guang-Zhi Wang Ji-Hong Yao Xiao-Feng Tian 《World Journal of Gastroenterology》 SCIE CAS 2019年第7期824-836,共13页
BACKGROUND Intestinal ischemia reperfusion(I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22(USP22... BACKGROUND Intestinal ischemia reperfusion(I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22(USP22) acts as regulator of cell cycle progression, proliferation, and tumor invasion. Depleted USP22 expression has been reported to contribute to arrested cell cycle and disrupted generation of differentiated cell types in crypts and villi. However, the role of USP22 in intestinal damage recovery has not been investigated. Therefore, elucidation of the underlying mechanism of USP22 in intestinal I/R injury may help to improve the tissue repair and patient prognosis in clinical practice.AIM To investigate the role of USP22 in intestinal cell proliferation and regeneration after intestinal I/R injury.METHODS An animal model of intestinal I/R injury was generated in male Sprague-Dawley rats by occlusion of the superior mesenteric artery followed by reperfusion.Chiu's scoring system was used to grade the damage to the intestinal mucosa. An in vitro model was developed by incubating rat intestinal epithelial IEC-6 cells in hypoxia/reoxygenation conditions in order to simulate I/R in vivo. siRNA and overexpression plasmid were used to regulate the expression of USP22. USP22,Cyclin D1, and proliferating cell nuclear antigen(PCNA) expression levels were measured by Western blot analysis and immunohistochemistry staining. Cell survival(viability) and cell cycle were evaluated using the Cell Counting Kit-8and flow cytometry, respectively.RESULTS USP22 expression was positively correlated with the expression levels of PCNA and Cyclin D1 both in vivo and in vitro, which confirmed that USP22 was involved in cell proliferation and intestinal regeneration after intestinal I/R injury. Decreased levels of Cyclin D1 and cell cycle arrest were observed in the USP22 knockdown group(P < 0.05), while opposite results were observed in the USP22 overexpression group(P < 0.05). In addition, increased expression of USP22 was related to improved intestinal pathology or IEC-6 cell viability after I/R or hypoxia/reoxygenation. These results suggested that USP22 may exert a protective effect on intestinal I/R injury by regulating cell proliferation and facilitating tissue regeneration.CONCLUSION USP22 is correlated with promoting intestinal cell proliferation and accelerating intestinal tissue regeneration after intestinal I/R injury and may serve as a potential target for therapeutic development for tissue repair during intestinal I/R injury. 展开更多
关键词 ubiquitin-specific proteasE 22 PROLIFERATION REGENERATION Repair INTESTINAL ISCHEMIA-REPERFUSION
下载PDF
Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer:A systematic review
7
作者 Eman Al-Balushi Amina Al Marzouqi +10 位作者 Shima Tavoosi Amir Hossein Baghsheikhi Arash Sadri Leyla Sharifi Aliabadi Mohammad-Mahdi Salarabedi Syed Azizur Rahman Nabeel Al-Yateem Alireza Mosavi Jarrahi Aram Halimi Mohammad Ahmadvand Wael M Abdel-Rahman 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期197-213,共17页
BACKGROUND Colorectal cancer(CRC)is the third most frequent and the second most fatal cancer.The search for more effective drugs to treat this disease is ongoing.A better understanding of the mechanisms of CRC develop... BACKGROUND Colorectal cancer(CRC)is the third most frequent and the second most fatal cancer.The search for more effective drugs to treat this disease is ongoing.A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies.Ubiquitin-specific peptidases(USPs),the largest group of the deubiquitinase protein family,have long been implicated in various cancers.There have been numerous studies on the role of USPs in CRC;however,a comprehensive view of this role is lacking.AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC.METHODS We systematically queried the MEDLINE(via PubMed),Scopus,and Web of Science databases.RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC:Regulation of the cell cycle,apoptosis,cancer stemness,epithelial–mesenchymal transition,metastasis,DNA repair,and drug resistance.The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC.The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms.CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC. 展开更多
关键词 ubiquitin-specific peptidases Colorectal cancer Deubiquitinase protein family Drug target discovery Biomarker discovery
下载PDF
Elucidation of potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa
8
作者 Mingming Li Qiujin Zhu +4 位作者 Chao Qu Xiaohui Gong Yunhan Zhang Xin Zhang Shouwei Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2152-2160,共9页
Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.T... Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.The purpose aimed to reveal the potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa in this paper.The dynamic changes of endogenous proteases activity,free amino acids,and volatiles during dry-cured pork coppa processing were characterized.The results showed that 5 kinds of free amino acids,Glu,Lys,Val,Ala,and Leu,were identified as significant contributors to taste.Meanwhile,key volatiles,such as hexanal,nonanal,octanal,benzaldehyde,3-methyl butanoic acid,2-methyl propanoic acid,and ethyl octanoate,greatly contributed to the flavor characteristics of dry-cured pork coppa.Further partial correlation analysis was performed to better elucidate the relationship among parameters.The results revealed that close relationship between endogenous proteases and key substances.RAP not only significantly affected the accumulation of key active-amino acids,but also affected the accumulation of ethyl octanoate,2,3-pentanedione,and 2,3-octanedione by regulating the accumulation of octanoic acid and Leu.In addition,cathepsin B and D,DPP II,DPP IV and RAP notably affected accumulation of hexanal. 展开更多
关键词 Dry-cured pork coppa Endogenous proteases PROTEOLYSIS Key taste-active amino acids Volatile compounds
下载PDF
Roles of host proteases in the entry of SARS-CoV-2
9
作者 Alexandria Zabiegalal Yunjeong Kim Kyeong-Ok Chang 《Animal Diseases》 CAS 2024年第1期27-39,共13页
The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1... The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication. 展开更多
关键词 SARS-CoV-2 Spike protein(S) Host proteases Cleavage site Virus entry
下载PDF
Inhibition of Ubiquitin-specific Protease 4 Attenuates Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells via Transforming Growth Factor Beta Receptor Type Ⅰ
10
作者 Jin-yun PU Yu ZHANG +2 位作者 Li-xia WANG Jie WANG Jian-hua ZHOU 《Current Medical Science》 SCIE CAS 2022年第5期1000-1006,共7页
Objective Ubiquitin-specific protease 4(USP4)facilitates the development of transforming growth factor-beta 1(TGF-β1)-induced epithelial-mesenchymal transition(EMT)in various cancer cells.Moreover,EMT of renal tubula... Objective Ubiquitin-specific protease 4(USP4)facilitates the development of transforming growth factor-beta 1(TGF-β1)-induced epithelial-mesenchymal transition(EMT)in various cancer cells.Moreover,EMT of renal tubular epithelial cells(RTECs)is required for the progression of renal interstitial fibrosis.However,the role of USP4 in EMT of RTECs remains unknown.The present study aimed to explore the effect of USP4 on the EMT of RTECs as well as the involved mechanism.Methods In established unilateral ureteral obstruction(UUO)rats and NRK-52E cells,immunohistochemistry and Western blot assays were performed.Results USP4 expression was increased significantly with obstruction time.In NRK-52E cells stimulated by TGF-β1,USP4 expression was increased in a time-dependent manner.In addition,USP4 silencing with specific siRNA indicated that USP4 protein was suppressed effectively.Meanwhile,USP4 siRNA treatment restored E-cadherin and weakened alpha smooth muscle actin(α-SMA)expression,indicating that USP4 may promote EMT.After treatment with USP4 siRNA and TGF-β1 for 24 h,the expression of TGF-β1 receptor type I(TβRI)was decreased.Conclusion USP4 promotes the EMT of RTECs through upregulating TβRI,thereby facilitating renal interstitial fibrosis.These findings may provide a potential target of USP4 in the treatment of renal fibrosis. 展开更多
关键词 ubiquitin-specific protease 4 renal tubular epithelial cells epithelial-mesenchymal transition transforming growth factor-beta 1 receptor type I renal interstitial fibrosis
下载PDF
STRUCTURE-FUNCTION FEATURES AND EFFECTS ON BLOOD COAGULATION OF SNAKE VENOM SERINE PROTEASES* 被引量:2
11
作者 张云 李文辉 +3 位作者 高荣 吕秋敏 王婉瑜 熊郁良 《Zoological Research》 CAS CSCD 1998年第2期97-106,共10页
Snake venoms,especially those from the two subfamilies,Crotalinae and Viperinae,contained a lot of serine proteases. They were responsible for the hemorrhage,shock,or disorder of blood coagulation after envenomation. ... Snake venoms,especially those from the two subfamilies,Crotalinae and Viperinae,contained a lot of serine proteases. They were responsible for the hemorrhage,shock,or disorder of blood coagulation after envenomation. They acted,by activating,inactivating,or other converting effects,on almost all the components of hemostatic and fibrinolytic systems. Their sequences were homologous to trypsin-kallikrein serine proteases. Variation of primary sequences out of active center results in the difference of substrate specificities and the further difference of biological and pharmacological activities. Because of their common and unique properties compared to their physiological corresponding factors,snake venom proteases are proved to be an excellent model for the study of protease substrate discriminating mechanism. Furthermore,they have found an important position both in basic research and application of hemostasis and thrombosis in clinic. 展开更多
关键词 VENOMS proteases Blood coagulation
下载PDF
Effects of Different Light Qualities on Activity and Gene Expression of Caspase-like Proteases in Tobacco Leaves 被引量:3
12
作者 赵娟 柯学 +2 位作者 徐超华 李军营 龚明 《Agricultural Science & Technology》 CAS 2012年第2期276-279,338,共5页
[Objective] The study aimed to investigate the activity and gene expression of caspase-like proteases in tobacco leaves growing under different light qualities. [Method] By covering tobacco plants with white, red, yel... [Objective] The study aimed to investigate the activity and gene expression of caspase-like proteases in tobacco leaves growing under different light qualities. [Method] By covering tobacco plants with white, red, yellow, blue and purple films to obtain different light quality, the changes of chlorophyll content, activity and gene expression of caspase-like proteases in the tobacco leaves were studied. [Results] Compared with treatments of white, red and yellow film, blue and purple films delayed the decrease of chlorophyll content and senescence of tobacco leaves at the late growth stage, and relatively lowered the activity and gene expression of caspase-like proteases during growth, development and senescence periods. [Conclusion] Different light qualities exhibited various effects on the growth, development and senescence of tobacco leaves, possibly by affecting the activity and gene expression of caspase-like proteases to some extent. 展开更多
关键词 Light quality Tobacco leaves Growth and development Caspase-like proteases
下载PDF
Enteric bacterial proteases in inflammatory bowel diseasepathophysiology and clinical implications 被引量:6
13
作者 Ian M Carroll Nitsan Maharshak 《World Journal of Gastroenterology》 SCIE CAS 2013年第43期7531-7543,共13页
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases(IBD),yet the mechanism(s)in which this complex microbial community initiates or perpetua... Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases(IBD),yet the mechanism(s)in which this complex microbial community initiates or perpetuates inflammation remains unclear.The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD.We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system.Additionally,we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors,ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD.Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria.Although not classified as traditional virulence factors,proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability.Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD.A better understanding of these pathways and characterization of the enteric bacteria involved,their proteases,and protease receptors may pave the way for new therapeutic approaches for these diseases. 展开更多
关键词 proteasE PROTEINASE proteasE associated receptor ENTERIC MICROBIOTA EPITHELIAL barrier
下载PDF
Regulation of intestinal permeability: The role of proteases 被引量:7
14
作者 Hanne Van Spaendonk Hannah Ceuleers +7 位作者 Leonie Witters Eveline Patteet Jurgen Joossens Koen Augustyns Anne-Marie Lambeir Ingrid De Meester Joris G De Man Benedicte Y De Winter 《World Journal of Gastroenterology》 SCIE CAS 2017年第12期2106-2123,共18页
The gastrointestinal barrier is-with approximately 400 m^2-the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorpt... The gastrointestinal barrier is-with approximately 400 m^2-the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. 展开更多
关键词 Intestinal permeability Intestinal barrier Tight junction Paracellular permeability proteases Proteinase-activated receptor protease inhibitor Antiproteases
下载PDF
Family-level diversity of extracellular proteases of sedimentary bacteria from the South China Sea 被引量:4
15
作者 Jinyu Yang Yangyang Feng +4 位作者 Xiulan Chen Binbin Xie Yuzhong Zhang Mei Shi Xiying Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第12期73-83,共11页
Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened... Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened protease-producing bacteria from the South China Sea sediments and analyzed the diversity of their extracellular proteases at the family level through N-terminal amino acid sequencing. Results of the 16 S rRNA gene sequence analysis showed that all screened protease-producing bacteria belonged to the class Gammaproteobacteria and most of them were affiliated with different genera within the orders Alteromonadales and Vibrionales. The Nterminal amino acid sequence analysis for fourteen extracellular proteases from fourteen screened bacterial strains revealed that all these proteases belonged to the M4 family of metalloproteases or the S8 family of serine proteases. This study presents new details on taxa of marine sedimentary protease-producing bacteria and types of their extracellular proteases, which will help to comprehensively understand the process and mechanism of the microbial enzymatic degradation of marine sedimentary organic nitrogen. 展开更多
关键词 protease-producing bacteria DIVERSITY extracellular proteases protease families N-terminal amino acid sequencing South China Sea
下载PDF
Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases 被引量:7
16
作者 Hannah Ceuleers Hanne Van Spaendonk +7 位作者 Nikita Hanning Jelena Heirbaut Anne-Marie Lambeir Jurgen Joossens Koen Augustyns Joris G De Man Ingrid De Meester Benedicte Y De Winter 《World Journal of Gastroenterology》 SCIE CAS 2016年第47期10275-10286,共12页
Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling ... Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors(PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein. 展开更多
关键词 proteases Proteinase-activated receptors protease inhibitors Visceral hypersensitivity Visceral pain Irritable bowel syndrome Inflammatory bowel diseases
下载PDF
Enhanced Production of Salinity-Induced Proteases from <i>Aspergillus flavus</i>and <i>Aspergillus niger</i> 被引量:4
17
作者 Michael O. Okpara Olufemi S. Bamidele Joshua O. Ajele 《Advances in Enzyme Research》 2019年第4期45-56,共12页
Proteases are important industrial enzymes that account for about 60% of the total enzyme market globally due to their large application in food, feed, textile and pharmaceutical industries. The effect of salt stress ... Proteases are important industrial enzymes that account for about 60% of the total enzyme market globally due to their large application in food, feed, textile and pharmaceutical industries. The effect of salt stress on protease production was evaluated on Aspergillus flavus and Aspergillus niger. The enzyme production was enhanced by stepwise optimization of the culture parameters, notably, carbon source, nitrogen source, pH, and temperature of the submerged fermentation process while using a minimal salt media and casein as substrate for the protease activity. The fungi species were found to be good producers of both acid and alkaline proteases under 4% salt stress condition. The optimum culture conditions for alkaline protease production by Aspergillus flavus were sucrose 4%, peptone 1%, pH 8 at 40&deg;C with maximum enzymatic activities of 8.85 mM/min/mg protein, 5.22 mM/min/mg protein, 3.75 mM/min/mg protein, and 1.64 mM/min/mg protein, respectively. Lactose 4%, peptone 1%, pH 6 at 50&deg;C were the optimum culture conditions for acid protease production by Aspergillus flavus with maximum enzymatic activities of 4.59 mM/min/mg protein, 2.06 mM/min/mg protein, 1.24 mM/min/mg protein, and 1.23 mM/min/mg protein, respectively. For Aspergillus niger, the optimum culture conditions for alkaline protease production were corn starch 4%, yeast extract 1%, pH 6 at 40&deg;C with maximum enzymatic activities of 5.99 mM/min/mg protein, 3.85 mM/min/mg protein, 6.18 mM/min/mg protein, and 3.72 mM/min/mg protein, respectively. While lactose 4%, yeast extract 1%, pH 6 at 50&deg;C were the best culture conditions for acid protease production by Aspergillus niger with maximum enzymatic activities of 4.81 mM/min/mg protein, 0.93 mM/min/mg protein, 5.71 mM/min/mg protein, and 3.34 mM/min/mg protein, respectively. 展开更多
关键词 proteasE SALT-STRESS Fermentation ENZYMES Optimization
下载PDF
Versatility of microbial proteases 被引量:1
18
作者 Veloorvalappil N. Jisha Robinson B. Smitha +6 位作者 Selvanesan Pradeep Sasidharan Sreedevi Kizhakkepawothail N. Unni Sreedharan Sajith Prakasan Priji Moolakkariyil Sarath Josh Sailas Benjamin 《Advances in Enzyme Research》 2013年第3期39-51,共13页
Proteases or peptidases constitute the largest group of enzymes in bio-industry with a long array of uses. They play an invincible role in industrial biotechnology, especially in detergent, food and pharmaceutical are... Proteases or peptidases constitute the largest group of enzymes in bio-industry with a long array of uses. They play an invincible role in industrial biotechnology, especially in detergent, food and pharmaceutical arena. This focused review encompasses an overview on alkaline proteases, mainly of microbial sources in a handy module. Following an introduction and general classification with evolutionary insight, major sources of proteases (animal, plant and microbial including fungal, bacterial), their general properties with mechanism of action and molecular masses are discussed. Proteases fromBacillusspp. have been given special attention. In addition to this, an overview on the applications of proteases in detergent, tannery, food, metal recovery and waste treatment industries is also addressed briefly. 展开更多
关键词 Review proteases Classification SOURCES BACILLUS INDUSTRIAL USES
下载PDF
Degradation of naturally occurring and engineered antimicrobial peptides by proteases 被引量:1
19
作者 Bernard J. Moncla Kara Pryke +1 位作者 Lisa Cencia Rohan Phillip W. Graebing 《Advances in Bioscience and Biotechnology》 2011年第6期404-408,共5页
We hypothesized that current antimicrobial peptides should be susceptible to proteolytic digestion. The antimicrobial peptides: Griffithinsin, RC-101, LL-37, LSA-5, PSC-RANTES and DJ007 were degraded by commercially a... We hypothesized that current antimicrobial peptides should be susceptible to proteolytic digestion. The antimicrobial peptides: Griffithinsin, RC-101, LL-37, LSA-5, PSC-RANTES and DJ007 were degraded by commercially available proteases. Two different species of anaerobic vaginal flora, Prevotella bivia and Porphyromonas asaccharolytica also degraded the materials. Griffithsin was resistant to digestion by 8 of the 9 proteases and the bacteria while LL-37 was the most sensitive to protease digestion. These data suggests most of the molecules may not survive for very long in the proteolytic rich environments in which they are intended to function. 展开更多
关键词 MICROBICIDES HIV ANTI-HIV ANTIMICROBIAL PEPTIDES proteases
下载PDF
Contribution of lysosomal cysteine proteases in cardiac and renal diseases 被引量:1
20
作者 Damin Huang Yang-Long Li Xianwu Cheng 《World Journal of Hypertension》 2012年第3期29-33,共5页
Cardiac and renal diseases(CRDs) are characterized by extensive remodeling of the extracellular matrix(ECM)architecture of the cardiorenal system. Among the many extracellular proteolytic enzymes present in cardiorena... Cardiac and renal diseases(CRDs) are characterized by extensive remodeling of the extracellular matrix(ECM)architecture of the cardiorenal system. Among the many extracellular proteolytic enzymes present in cardiorenal cells and involved in ECM remodeling, members of the matrix metalloproteinase family and serine protease family have received the most attention. However, recent findings from laboratory and clinical studies have indicated that cysteine protease cathepsins also participate in pathogenesis of the heart and kidney.Deficiency and pharmacological inhibition of cathepsins have allowed their in vivo evaluation in the setting of pathological conditions. Furthermore, recent studiesevaluating the feasibility of cathepsins as a diagnostic tool have suggested that the serum levels of cathepsins L, S and K and their endogenous inhibitor cystatin C have predictive value as biomarkers in patients with coronary artery disease and heart and renal failure. The goal of this review is to highlight recent discoveries regarding the contributions of cathepsins in CRDs, particularly hypertensive heart failure and proteinuric kidney disease. 展开更多
关键词 CYSTEINE proteases CATHEPSINS CYSTATIN C EXTRACELLULAR matrix proteins CARDIOVASCULAR disease Inflammation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部