Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
In order to study the web-crippling behavior of aluminum hollow sectionsubjected to concentrated load, sixteen aluminum hollow tubes with different loadingconditions, bearing length and web slenderness ratios were tes...In order to study the web-crippling behavior of aluminum hollow sectionsubjected to concentrated load, sixteen aluminum hollow tubes with different loadingconditions, bearing length and web slenderness ratios were tested. This paper alsodiscussed a method to improve the web crippling strength of the aluminum hollowsections by infilling the mortar as composite section, and four aluminum compositesections were tested. The literature has reported lots of web crippling tests, but there isfew reports on web crippling behavior of aluminum composite sections. Interior-Ground(IG) and End-Ground (EG) loading conditions were adopted, with the specimens placedon the ground to simulate the load of floor joists. Specimens were also placed on abearing plate with end (ETF) or interior (ITF) bearing load. The influence of supportingconditions, loading positions, bearing length and web slenderness ratios on web cripplingultimate bearing capacity and ductility of aluminum hollow sections was studied. Theenhancements of infilling mortar were also evaluated. The results obtained from theexperiments show that infilling the mortar in aluminum hollow tubes is an effectivemethod for enhancing the ultimate capacity of the web, especially for specimens underInterior-Ground (IG) condition. Based on the results of parameter research, this paperproposes a series of design formulas for well predicting web crippling ultimate capacityof aluminum hollow and composite tubes under four different loading and boundaryconditions.展开更多
为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固...为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固定振次循环荷载后极限承载力的变化进行研究。试验表明,土工格室加筋能显著提高地基极限承载力并能显著减小坡顶和坡中临界破坏时的法向累积变形,在加筋间距一定的情况下,加筋层数增加和格室高度增大均可不同程度提高极限承载力并减小临界破坏时坡顶法向累积变形,格室焊距的减小也可在一定程度提高极限承载力,格室焊距对边坡法向变形影响不大;长期循环荷载下固定间距加筋层数对路堤竖向累积沉降量影响不大,而对边坡坡顶法向累积变形有一定影响,格室高度增大和格室焊距减小均可不同程度减小路堤竖向累积沉降量和坡面法向累积变形;越靠近加载点处,路堤土压力值受加筋影响越显著,加筋提高了土体刚度和密实度,使加筋路堤土压力值较无筋路堤明显增大;对于无筋路堤,改变动载幅值和振次均导致振后极限承载力有不同程度的降低,而对于加筋路堤,当动载幅值≥30 k Pa或动载振次≥1 000时,振后极限承载力均有不同程度的提高。展开更多
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金has been supported by the National NaturalScience Foundation of China (Nos. 51478047 and 51778066)the Natural ScienceFoundation of Hubei Province (No. 2018CFB730)Foundation project of College ofengineering and technology, Yangtze University (No. 2017KY06)。
文摘In order to study the web-crippling behavior of aluminum hollow sectionsubjected to concentrated load, sixteen aluminum hollow tubes with different loadingconditions, bearing length and web slenderness ratios were tested. This paper alsodiscussed a method to improve the web crippling strength of the aluminum hollowsections by infilling the mortar as composite section, and four aluminum compositesections were tested. The literature has reported lots of web crippling tests, but there isfew reports on web crippling behavior of aluminum composite sections. Interior-Ground(IG) and End-Ground (EG) loading conditions were adopted, with the specimens placedon the ground to simulate the load of floor joists. Specimens were also placed on abearing plate with end (ETF) or interior (ITF) bearing load. The influence of supportingconditions, loading positions, bearing length and web slenderness ratios on web cripplingultimate bearing capacity and ductility of aluminum hollow sections was studied. Theenhancements of infilling mortar were also evaluated. The results obtained from theexperiments show that infilling the mortar in aluminum hollow tubes is an effectivemethod for enhancing the ultimate capacity of the web, especially for specimens underInterior-Ground (IG) condition. Based on the results of parameter research, this paperproposes a series of design formulas for well predicting web crippling ultimate capacityof aluminum hollow and composite tubes under four different loading and boundaryconditions.
文摘为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固定振次循环荷载后极限承载力的变化进行研究。试验表明,土工格室加筋能显著提高地基极限承载力并能显著减小坡顶和坡中临界破坏时的法向累积变形,在加筋间距一定的情况下,加筋层数增加和格室高度增大均可不同程度提高极限承载力并减小临界破坏时坡顶法向累积变形,格室焊距的减小也可在一定程度提高极限承载力,格室焊距对边坡法向变形影响不大;长期循环荷载下固定间距加筋层数对路堤竖向累积沉降量影响不大,而对边坡坡顶法向累积变形有一定影响,格室高度增大和格室焊距减小均可不同程度减小路堤竖向累积沉降量和坡面法向累积变形;越靠近加载点处,路堤土压力值受加筋影响越显著,加筋提高了土体刚度和密实度,使加筋路堤土压力值较无筋路堤明显增大;对于无筋路堤,改变动载幅值和振次均导致振后极限承载力有不同程度的降低,而对于加筋路堤,当动载幅值≥30 k Pa或动载振次≥1 000时,振后极限承载力均有不同程度的提高。