In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus wit...In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.展开更多
Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials...Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials, which is not only expensive but also difficult to prepare the xonoflite fibers with diameters around 100 nm. In this study, the ultra fine xonotlite fibers with diameters around 100 nm were prepared by an autoclaving method. The preparation was low-cost oriented by using natural powder quartz and lime as the major raw materials. The intergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondary particles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibers and their secondary particles were produced at 216℃ for 6 h with a continuous stirring of 300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconium oxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an important role in controlling the diameter of xonotlite fibers.展开更多
Nanometer-sized xonotlite fibers have great potential application in manyfields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine andhighly active silica as the major raw materials, ...Nanometer-sized xonotlite fibers have great potential application in manyfields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine andhighly active silica as the major raw materials, which is not only expensive but also difficult toprepare the xonotlite fibers with diameters around 100 nm. In this study, the ultra fine xonotlitefibers with diameters around 100 nm were prepared by an autoclaving method. The preparation waslow-cost oriented by using natural powder quartz and lime as the major raw materials. Theintergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondaryparticles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibersand their secondary particles were produced at 216 deg C for 6 h with a continuous stirring of300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconiumoxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an importantrole in controlling the diameter of the xonotlite fibers.展开更多
采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条...采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条件:NaOH浓度5 g/L、温度110℃、时间45 m in;并进一步证明了机械力作用能促进开纤效果。展开更多
文摘In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.
文摘Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials, which is not only expensive but also difficult to prepare the xonoflite fibers with diameters around 100 nm. In this study, the ultra fine xonotlite fibers with diameters around 100 nm were prepared by an autoclaving method. The preparation was low-cost oriented by using natural powder quartz and lime as the major raw materials. The intergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondary particles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibers and their secondary particles were produced at 216℃ for 6 h with a continuous stirring of 300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconium oxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an important role in controlling the diameter of xonotlite fibers.
基金This work was financially supported by the National Natural Science Foundation of China (No.50172009)
文摘Nanometer-sized xonotlite fibers have great potential application in manyfields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine andhighly active silica as the major raw materials, which is not only expensive but also difficult toprepare the xonotlite fibers with diameters around 100 nm. In this study, the ultra fine xonotlitefibers with diameters around 100 nm were prepared by an autoclaving method. The preparation waslow-cost oriented by using natural powder quartz and lime as the major raw materials. Theintergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondaryparticles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibersand their secondary particles were produced at 216 deg C for 6 h with a continuous stirring of300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconiumoxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an importantrole in controlling the diameter of the xonotlite fibers.
文摘采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条件:NaOH浓度5 g/L、温度110℃、时间45 m in;并进一步证明了机械力作用能促进开纤效果。