Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (...Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (SPC MAB). The formed two beams point to two different directions to obtain two images of the observed scenario. The receiving antennas are configured as displaced phase center multiple azimuth beams (DPC MAB) to decrease the required pulse repetition frequency (PRF). The de- creased PRF can ensure the high resolution wide swath imaging. Based on the analysis of the character of the return signal, a pro- cessing method named multiple beam multiple channel algorithm (MBMCA) is proposed to separate the aliased sub-beams' echoes. The separated echoes are focused respectively to get the revisit imaging to the observed scenario. The simulation experiments ve- rify the validity and correctness of the proposed imaging mode and processing algorithm.展开更多
Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks ...Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.展开更多
In order to obtain the global precipitation distribution data,this paper investigates the precipitation distribution model,the normalized radar cross-section model,and the retrieval algorithm with X-band synthetic ape...In order to obtain the global precipitation distribution data,this paper investigates the precipitation distribution model,the normalized radar cross-section model,and the retrieval algorithm with X-band synthetic aperture radar(X-SAR).A new retrieval algorithm based on the surface-scattering reference attenuation is developed to retrieve the rain rate above the ground surface.This new algorithm needs no statistical work load and has more extensive applications.Calculations using the new algorithm for three cases verify that the rainfall is retrieved with high precision,which proves the capability of the algorithm.展开更多
High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (...High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.展开更多
This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. M...This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.展开更多
The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constra...The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constrained least square (CLS) is presented and applied to UWB radar system to deal with this issue. The high resolution of radar image is equivalent to multi-channel blind image restoration based on the improved model of the through-wall radar echo. And a new cost function is proposed to the multi-channel blind image restoration by considering the concept of sub-space as the limitation of blur identification. The proposed algorithm has all advantages of CLS and sub-space, and converts the image estimation to alternating-minimizing the two cost functions. Experimental results prove that the proposed algorithm is effective at improving the resolution of radar image even at low SNR.展开更多
Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can ...Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.展开更多
基金supported by the National Natural Science Foundation of China(61271287)
文摘Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (SPC MAB). The formed two beams point to two different directions to obtain two images of the observed scenario. The receiving antennas are configured as displaced phase center multiple azimuth beams (DPC MAB) to decrease the required pulse repetition frequency (PRF). The de- creased PRF can ensure the high resolution wide swath imaging. Based on the analysis of the character of the return signal, a pro- cessing method named multiple beam multiple channel algorithm (MBMCA) is proposed to separate the aliased sub-beams' echoes. The separated echoes are focused respectively to get the revisit imaging to the observed scenario. The simulation experiments ve- rify the validity and correctness of the proposed imaging mode and processing algorithm.
文摘Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.
基金Supported by the Science and Technology Commission of Shanghai Municipality under Grant No.08590700500
文摘In order to obtain the global precipitation distribution data,this paper investigates the precipitation distribution model,the normalized radar cross-section model,and the retrieval algorithm with X-band synthetic aperture radar(X-SAR).A new retrieval algorithm based on the surface-scattering reference attenuation is developed to retrieve the rain rate above the ground surface.This new algorithm needs no statistical work load and has more extensive applications.Calculations using the new algorithm for three cases verify that the rainfall is retrieved with high precision,which proves the capability of the algorithm.
文摘High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.
文摘This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.
基金Sponsored by the National Natural Science Foundation of China(60472110)
文摘The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constrained least square (CLS) is presented and applied to UWB radar system to deal with this issue. The high resolution of radar image is equivalent to multi-channel blind image restoration based on the improved model of the through-wall radar echo. And a new cost function is proposed to the multi-channel blind image restoration by considering the concept of sub-space as the limitation of blur identification. The proposed algorithm has all advantages of CLS and sub-space, and converts the image estimation to alternating-minimizing the two cost functions. Experimental results prove that the proposed algorithm is effective at improving the resolution of radar image even at low SNR.
文摘Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.