期刊文献+
共找到440篇文章
< 1 2 22 >
每页显示 20 50 100
Research on Heredity of Coarse Ferrite Grains
1
作者 Wangzhan FAN Weimin GUI Youfeng CHEN 《Research and Application of Materials Science》 2024年第1期5-8,共4页
The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite gra... The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite grains,as well as the influence of the ferrite grain size on the main technical indicators of gas carburizing.The results show that coarse ferrite grains may not necessarily cause the coarse austenite grains,but may result in mixed austenite grains.After annealing treatment,the coarse ferrite grains can be significantly refined and homogenized.Moreover,the coarse ferrite grains have no significant effects on hardnessand intergranular oxidationof gas carburizing. 展开更多
关键词 grain size coarse ferrite grains AUSTENITE gas carburizing
下载PDF
MODELING OF FERRITE GRAIN GROWTH OF LOW CARBON STEELS DURING HOT ROLLING 被引量:4
2
作者 Y.T. Zhang, D.Z. Li and Y.Y. LiInstitute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China Manuscript received 26 December 2001 in revised form 9 February 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第3期267-271,共5页
For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot roll... For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot rolling. By using this model, the initial ferrite grain size after continuous cooling and ferrite grain growing in coiling procedure can be predicted. In-plant trials were performed in the hot strip mill of Ansteel. The calculated final ferrite grain sizes are in good agreement with the experimental ones. It is helpful both for simulation of microstructure evolution and prediction of mechanical properties. 展开更多
关键词 ferrite Forecasting grain growth Hot rolling Iron and steel plants Mathematical models Mechanical properties
下载PDF
Surface Ferrite Grain Refinement and Mechanical Properties of Low Carbon Steel Plates 被引量:4
3
作者 FAN Jian-wen DAI Xiao-li +2 位作者 XIE Rui-ping ZHANG Wei-xu WANG Zu-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第4期35-39,共5页
Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemi... Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased. 展开更多
关键词 TMCP fine grained ferrite plain low carbon steel plate mechanical property
下载PDF
Development of grain boundary allotriomorphic ferrite/granular bainite duplex steel 被引量:5
4
作者 PingguangXu BingzheBai +3 位作者 HongshengFang ZhenjiaWang JianpingWang YongkunPan 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期39-44,共6页
A new hot-rolled low alloy high strength steel with grain boundaryallotriomorphic ferrite/granular bainite duplex microstructure has been developed through novelmicrostructure and alloying designs without any noble me... A new hot-rolled low alloy high strength steel with grain boundaryallotriomorphic ferrite/granular bainite duplex microstructure has been developed through novelmicrostructure and alloying designs without any noble metal elements such as nickel and molybdenum.Its as-rolled microstructure and mechanical properties, fatigue crack propagation behavior comparedwith single granular bainitic steel as well as continuous cooling transformation, were investigatedin detail. The measured result of CCT (continuous cooling transformation) curve shows that suchduplex microstructure can be easily obtained within a wide air-cooling rate range. More importantly,this duplex microstructure has much better combination of toughness and strength than the singlegranular bainite microstructure. It is found that the grain boundary allotriomorphic ferrite in thisduplex microstructure can blunt the microcrack tip, cause fatigue crack propagation route branchingand curving, and thus it increases the resistance to fatigue crack propagation, improves steeltoughness. The mechanical properties of the above commercial duplex steel plates have achieved orexceeded 870 MPa ultimate tensile strength, 570 MPa yield strength, 18 percent elongation and 34 JCharpy V-notch impact energy at -40 deg C, showing good development potential. 展开更多
关键词 grain boundary allotriomorphic ferrite granular bainite duplexmicrostructure high strength steel
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
5
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 grain boundary engineering ferritic/martensitic steel Prior austenite grain boundary character distribution grain boundary connectivity Intergranular damage resistance
下载PDF
Observations on the Formation of Ultrafine Ferrite Grain Size in Steels by Physical Simulation Routes 被引量:1
6
作者 L.X. Pan L.P. Karjalainen M. C. Somani 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期112-114,共3页
Some observations are reported on the simulation of two thermomechanical routes to produce ultrafine ferrite grainsize in steels. One C-Mn grade and Nb, Nb-Ti and Nb-high Ti bearing steels were used in the tests perfo... Some observations are reported on the simulation of two thermomechanical routes to produce ultrafine ferrite grainsize in steels. One C-Mn grade and Nb, Nb-Ti and Nb-high Ti bearing steels were used in the tests performed ona Gleeble simulator and a laboratory rolling mill. The routes included severe hot deformation of prior grain-refinedaustenite at the temperature close to Ar3 (DIF) and static recrystallization of fine-grained cold-rolled martensite(SRM). It was observed that the hot deformation induces the formation of ferrite above the Ar3 temperature of thesteel, but severe reductions are required for the complete transformation. Strain of 1.2 can result in about 70% offerrite with the grain size of about 1.4~2μm in all the studied steels. Similarly, in short annealing of cold-workedmartensite, the static recrystallization can also lead to a grain size of about 1.5 μm. The distribution of carbonvaries in the microstructures, carbon being in the second phase in the DIF route and in carbide particles in the SRMroute, which may have a significant influence on the mechanical properties and the thermal stability of ultrafine grainstructure. 展开更多
关键词 ULTRAFINE grain size Steels Physical simulation Strain-induced ferrite Cold ROLLING and ANNEALING
下载PDF
Sintering process and grain growth of Mn-Zn ferrite nanoparticles
7
作者 WANG Xin CUI Yinfang WANG Yongming HAO Shunli LIU Chunjing 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期526-530,共5页
The density, microstructure and magnetic properties of non-doped Mn-Zn ferrite nanoparticles sintered compacts were investigated. The compacts of non-doped Mn-Zn ferrite nanoparticles were sintered by segmented-sinter... The density, microstructure and magnetic properties of non-doped Mn-Zn ferrite nanoparticles sintered compacts were investigated. The compacts of non-doped Mn-Zn ferrite nanoparticles were sintered by segmented-sintering process at lower sintering temperature. The density of sintered samples was measured by Archimedes method, and the phase composition and microstructure were examined by XRD and SEM. The sintered Mn-Zn ferrite magnetic measurements were carried out with Vibrating Sample. The results show that the density of sintered compacts increases with the rising of sintering temperature, achieving 4.8245 g·cm-3 when sintered at 900 ℃, which is the optimal density of Mn-Zn functional ferrite needed and from the fractured surface of sintered samples, it can be seen that the grain grows well with small grain size and homogeneous distribution. 展开更多
关键词 Mn-Zn ferrite sintering temperature grain growth DENSITY magnetic properties
下载PDF
Grain Size Prediction after Continuous Cooling Transformation from Deformed Austenite to Ferrite
8
作者 Qu Jinbo Wang Zhaodong +1 位作者 Liu Xianghua Wang Guodong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1998年第2期42-44,共3页
On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated... On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated results of computer simulation with the algorithm are in so good agreement with the measured ones in controlled rolling and controlled cooling experiments that the theoretical algorithm is feasible. 展开更多
关键词 ferrite grain size transformation kinetics continuous cooling deformed austenite
下载PDF
Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels 被引量:10
9
作者 Ran Wei Cheng-jia Shang Kai-ming Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期737-741,共5页
The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron mi... The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron microscopy, and electron backscattering dif- fraction. The coarse-grained region of the heat-affected zone consists of predominantly bainite and a small proportion of acicular ferrite. Bainite packets are separated by high angle boundaries. Acicular ferrite laths or plates in the coarse-grained region of the heat-affected zone formed prior to bainite packets partition austenite grains into many smaller and separate areas, resulting in fine-grained mixed microstruc- tures. Electron backscattefing diffraction analysis indicates that the average crystallographic grain size of the coarse-grained region of the heat-affected zone reaches 6-9 μm, much smaller than that of anstanite grains. 展开更多
关键词 microalloyed steels WELDING grain refinement BAINITE acicular ferrite
下载PDF
Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel 被引量:5
10
作者 Yang Li Peng-fei Du +7 位作者 Zhou-hua Jiang Cong-lin Yao Lu Bai Qi Wang Guang Xu Chang-yong Chen Lei Zhang Hua-bing Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第11期1385-1395,共11页
The formation mechanism of acicular ferrite and its microstructural characteristics in 430 ferrite stainless steel with TiC additions were studied by theory and experiment.Using an"edge?to?edge matching"mode... The formation mechanism of acicular ferrite and its microstructural characteristics in 430 ferrite stainless steel with TiC additions were studied by theory and experiment.Using an"edge?to?edge matching"model,a 5.25 mismatch between TiC(FCC structure)and ferritic stainless steel(BCC structure)was identified,which met the mismatch requirement for the heterogeneous nucleation of 430 ferritic stainless steel.TiC was found to be an effective nucleation site for the formation of acicular ferrite in a smelting experiment,as analyzed by metallographic examination,Image-Pro Plus 6.0 analysis software,and SEM–EDS.Furthermore,small inclusions in the size of 2–4?m increased the probability of acicular ferrite nucleation,and the secondary acicular ferrite would grow sympathetically from the initial acicular ferrite to produce multi-dimensional acicular ferrites.Moreover,the addition of Ti C can increase the average microstrain and dislocation density of 430 ferrite stainless steel,as calculated by Williamson-Hall(WH)method,which could play some role in strengthening the dislocation. 展开更多
关键词 acicular ferrite DISLOCATION density STAINLESS steel TIC grain REFINER oxide METALLURGY
下载PDF
Microstructures of an Ultrafine Grained SS400 Steel in an Industrial Scale 被引量:4
11
作者 Hua DING Long LI +2 位作者 Chunzheng YANG Dan SONG Linxiu DU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期145-148,共4页
The microstructures of a SS400 steel after thermomechanical control process(TMCP) in an industrial production were observed by optical microscope,scanning electron microscope(SEM) and transmission electron microsc... The microstructures of a SS400 steel after thermomechanical control process(TMCP) in an industrial production were observed by optical microscope,scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the size of ferrite grains was 4-5μm,and transmission of ferrite was around 70%.The types of the ultrafine ferrite grains were analyzed and the strengthening mechanisms were discussed.The results show that the ultrafine ferrite grains came from three processes,i.e.deformation induced ferrite transformation(DIFT).dynamic recrystallization of ferrite and accelerated cooling process.The increase in the strength of the material was mainly due to the grain refining. 展开更多
关键词 SS400 steel Ultrafine ferrite grain Mechanical property MICROSTRUCTURE
下载PDF
Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel 被引量:2
12
作者 Pei Li Jun Li +2 位作者 Qing-ge Meng Wen-bin Hu Chun-fu Kuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期933-941,共9页
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo... Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples. 展开更多
关键词 high-strength steel MARTENSITE ferrite HEATING MICROSTRUCTURE tensile properties grain refinement
下载PDF
Microstructural Features During Strain Induced Ferrite Transformation in 08 and 20Mn Steels 被引量:2
13
作者 Ping Yang, Feng-e Cui, Fuming Wang (Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China) (Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China) 《Journal of University of Science and Technology Beijing》 CSCD 2001年第2期105-110,共6页
The microstructure evolution during strain induced ferrite transformation was followed in thermal-simulation tests of clean 08 and 20Mn steels. The influences of carbon equivalence and initial austenite grain size on ... The microstructure evolution during strain induced ferrite transformation was followed in thermal-simulation tests of clean 08 and 20Mn steels. The influences of carbon equivalence and initial austenite grain size on ferrite grain refinement and the volume fraction of ferrite during straining were inspected. The results revealed that the accelerating effect of ferrite transformation by strain was increased as the carbon equivalence decreased. However, finer ferrite grains were obtained at higher carbon content. At strain of similar to1.5 ferrite grains less than 3 mum and 2 mum can be obtained in 08 and 20Mn steels respectively. Whereas the ferrite grain refinement in 08 steel was due to both effects of strain induced transformation and ferrite dynamic recrystallization, that in 20Mn was mainly due to strain induced transformation. Heavy strain can produce fine ferrite grains in coarse austenite grained 08 steel, but it would lead to band microstructure in coarse austenite grained 20Mn. 展开更多
关键词 clean carbon steel strain induced transformation grain refinement ferrite dynamic recrystallization
下载PDF
EFFECT OF Zr ADDITION TO Ti-KILLED STEEL ON INCLUSION FORMATION AND MICROSTRUCTURAL EVOLUTION IN WELDING INDUCED COARSE-GRAINED HEAT AFFECTED ZONE 被引量:18
14
作者 F. Chai C.F. Yang +3 位作者 H. Su Y.Q. Zhang Z. Xu Y.H. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期220-226,共7页
Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toug... Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. It indicated that the chemical constituents of inclusions gradually varied from the TiO oxide to the Ti-O+Zr-O compound oxide and a single phase of the ZrO2 oxide, as the Zr content increased from zero to 0.0100%. A trace of Zr (0.0030%-0.0080%, depending on the oxygen content in liquid steel) provided a large amount of nucleating core for Ti oxide because of the larger specific density of ZrO2 oxide, and produced a small size distribution of the inclusions favorable for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ, with enhanced impact toughness. Otherwise, a high content of Zr (-0.0100%) produced a single phase Zr02, which was impotent to nucleate acicular ferrite, and a microstructure composed of ferrite side plate and grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations. 展开更多
关键词 Nonmetallic inclusions ZIRCONIUM Acicular ferrite Coarse-grain heat affected zone (CGHAZ)
下载PDF
Effects of C and Mn elements on deformation-enhanced ferrite transformation in low carbon (Mn) steels 被引量:1
15
作者 Rongfeng Zhou Wangyue Yang +1 位作者 Rong Zhou Zuqing Sun 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期507-511,共5页
Effects of C and Mn contents on the deformation-enhanced ferrite transformation (DEFT) in low carbon (Mn) steels have been investigated by hot compression. The microstructures of 2-4μm ultra-fine equiaxed ferrite... Effects of C and Mn contents on the deformation-enhanced ferrite transformation (DEFT) in low carbon (Mn) steels have been investigated by hot compression. The microstructures of 2-4μm ultra-fine equiaxed ferrite grains with minors distributed homogeneously can be obtained by DEFT in all the tested steels. The more pronounced refinement is achieved as the C or Mn content increasing because of the higher-density nucleating sites and lower growth rate. The effectiveness of C on the level of refinement is more obvious than that of Mn. 展开更多
关键词 deformation-enhanced transformation ferrite grain refinement low carbon steel manganese steel
下载PDF
Comparison of Ferrite Refinement Mechanisms by Different Processing Schedules in 08 and 20Mn Steels 被引量:1
16
作者 Ping Yang Feng’e Gui, Shicai Ma Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第3期218-223,共6页
The influence of deforming temperature on ferrite refinement was analyzed by comparing the microstructures obtained by deformation at above A(r3), in two-phase region of (alpha + gamma) and at below A(t) in clean 08 a... The influence of deforming temperature on ferrite refinement was analyzed by comparing the microstructures obtained by deformation at above A(r3), in two-phase region of (alpha + gamma) and at below A(t) in clean 08 and 20Mn steels. The results indicate that ferrite refinement through strain induced transformation by deformation at above A(r3) is more effective than that by deformation simply through ferrite dynamic recrystallization. The main problem of ferrite refinement by deformation at below A(r3) is the inhomogeneity of microstructure which is controlled by the orientations and sizes of ferrite grains and the distribution of second phases. Ferrite dynamic recrystallization after strain induced transformation can further effectively refine ferrite. 展开更多
关键词 clean carbon steel strain induced transformation grain refinement ferrite dynamic recrystallization
下载PDF
Low loss Z-type Hexaferrites with Bi2O3 Additives for Ultra-high Frequency Antenna Applications
17
作者 GUO Yongqiang NIE Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1037-1042,共6页
The Z-type ferrites of nominal composition Ba3Co2 Fe24O41+x wt% Bi2O3, where x=0.25, 0.5, 1.0, 1.5, 2.0, were prepared by conventional ceramic processes. The influence of Bi2O3 content on the bulk densities, microstru... The Z-type ferrites of nominal composition Ba3Co2 Fe24O41+x wt% Bi2O3, where x=0.25, 0.5, 1.0, 1.5, 2.0, were prepared by conventional ceramic processes. The influence of Bi2O3 content on the bulk densities, microstructures, magnetic and dielectric properties of Z-type ferrite samples were systematically examined so as to obtain materials with low magnetic and dielectric loss tangent over a frequency ranging from 600 to 800 MHz. The experimental results showed that addition of Bi2O3 lowered the sintering temperature(1 020 ℃) and then reduced the average grain size(<2 μm) and enhanced the resistivity(>2.68×10^8 Ω·cm) dramatically, which consequently decreased the magnetic and dielectric loss. Additionally, the low loss factors were observed at the Bi2O3 content x = 1.0, i e, tan δμ/μ’=0.013 and tan δε/ε’= 0.001 at 800 MHz, and such materials could be used for antennas miniaturization from 600 to 800 MHz. 展开更多
关键词 low LOSS Z-type ferrites grain size ANTENNAS
下载PDF
Non-Steady Equilibrium during Pro-Eutectoid Ferrite Formation in Fe-0.2C Alloy
18
作者 ZHANG Hong-bing WU Rui-heng +1 位作者 HSU T Y(XU Zu-yao) RUAN Xue-yu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2002年第2期28-32,共5页
As rolled microstructure and mechanical properties of a new kind of grain boundary allotriomorphic ferrite/granular bainite duplex steel plate and its crack propagation behavior were investigated in comparison with s... As rolled microstructure and mechanical properties of a new kind of grain boundary allotriomorphic ferrite/granular bainite duplex steel plate and its crack propagation behavior were investigated in comparison with simple granular bainitic steel plate. These new duplex plate steels possess better combination of strength and toughness than granular bainite plate steels under the conditions of conventional rolling and air cooling. The observation of fatigue crack propagation behaviors showed that the existence of proper grain boundary allotriomorphic ferrite increases the compatible deformation ability of duplex microstructure and leads to the formation of crack branching and curving route, and it has an evidently blunting effect on microcrack tip and results in higher impact toughness. In addition, the new duplex steel plate also has good weldability as hot rolled high strength low alloy structural steel. 展开更多
关键词 duplex microstructure grain boundary allotriomorphic ferrite granular bainite high strength steel WELDABILITY
下载PDF
Characteristics of Strain-Induced Ferrite in Low Carbon Steel
19
作者 LIWei-juan LIUCui-qin +1 位作者 WANGGuo-dong LIUXiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2003年第4期54-58,共5页
The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope.The nucleation sites of strain-induced ferrite include grain boundary,grain inside,deformed band and annealing ... The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope.The nucleation sites of strain-induced ferrite include grain boundary,grain inside,deformed band and annealing twin boundary.The shapes of the ferrite accordingly are equiaxed irregular polygonal,strip-shaped and acicular. 展开更多
关键词 low carbon steel strain-induced ferrite grain boundary formed band annealing twin boundary
下载PDF
The effect of Ti addition on equiaxed grain formation in ferritic stainless steel welds
20
作者 HAN Jian ZHENG Hongguang WU Difeng XU Haigang 《Baosteel Technical Research》 CAS 2010年第1期45-49,共5页
This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which... This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which can benefit the columnar-to-equiaxed transition (CET) of gas tungsten arc welding (GTAW). Meanwhile,the initial morphology of the precipitates, the concentration multiplications of Ti, N, etc. of FSS 439 should be controlled to induce the formation of CET during the short welding process. 展开更多
关键词 ferritic stainless steel Ti addition equiaxed grain WELDING
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部