To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)...To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.展开更多
A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF ...A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF pulse compressor cavities,so that the power gain factor can be 3.2,which is supposed to multiply the RF power from 50 MW to 1 60 MW.In this paper,we report our work on C-band RF pulse compressor,namely the design simulation and cold test results.展开更多
The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy me...The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.展开更多
The observation of Rabi sideband of Na atom shows the two-level dressed atom model is over simplified.Using a multi-level model and considering the time evolution of the laser pulse the experiment is well explained.
Theβ-Ga_(2)O_(3)films are prepared on polished Al_(2)O_(3)(0001)substrates by pulsed laser deposition at different oxygen partial pressures.The influence of oxygen partial pressure on crystal structure,surface morpho...Theβ-Ga_(2)O_(3)films are prepared on polished Al_(2)O_(3)(0001)substrates by pulsed laser deposition at different oxygen partial pressures.The influence of oxygen partial pressure on crystal structure,surface morphology,thickness,optical properties,and photoluminescence properties are studied by x-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscope(SEM),spectrophotometer,and spectrofluorometer.The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure,the full width at half maximum(FWHM)and grain size increase.With the increase of oxygen pressure,the thickness of the films first increases and then decreases.The room-temperature UV-visible(UV-Vis)absorption spectra show that the bandgap of theβ-Ga_(2)O_(3)film increases from4.76 e V to 4.91 e V as oxygen pressure decreasing.Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm(~4.0 e V),360 nm(~3.44 e V),445 nm(~2.79 e V),and 467 nm(~2.66 e V),respectively.In addition,the total photoluminescence intensity decreases with oxygen pressure increasing,and it is found that the two UV bands are related to self-trapped holes(STHs)at O1 sites and between two O2-s sites,respectively,and the two blue bands originate from V_(Ga)^(2-)at Ga1 tetrahedral sites.The photoluminescence mechanism of the films is also discussed.These results will lay a foundation for investigating the Ga_(2)O_(3)film-based electronic devices.展开更多
For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented bas...For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented based on frequencyselective surface(FSS). The absorber is composed of polyvinyl chloride(PVC) layer, polyimide(PI) layer, and poly tetra fluoro ethylene(PTFE) layer, with a sandwich structure of PVC–PI–PTFE–metal plate. Periodic conductive patterns play a crucial role in the absorber, and in traditional, it is designed on the upper surface of PI layer to form LC resonance. Different from commonly absorber, all the patterns are located on the lower surface of the PI layer in this work, and hence the impedance matching and absorptivity are improved in this purposed absorber. The flexible absorber with patterns on lower surface of the PI layer is compared with that on upper surface of the PI layer, the difference and the reasons are explained by absorption mechanism based on equivalent circuit model, and surface current density and electric field distribution are used to analyze resonance peaks. Absorptivity is greater than 90% in a frequency range of 10.47 GHz–45.44 GHz with relative bandwidth of 125.1%, covering the whole Ku, K, Ka, and some of X, U bands, especially containing the whole K bands from 12 GHz to 40 GHz. Radar cross section(RCS) is reduced at least 10 dB in 11.48 GHz–43.87 GHz frequency ranges,and absorption remained about 90% when the incident angle changed from 0°to 55°. The purposed absorber is fabricated,measured, and experiment results show good agreement with theoretical analysis and numerical simulation. After bonded on outer surface of different cylinders with diameters of 200 mm and 100 mm, the absorption of MMA is approximately reduced 10% and 20% respectively, which shows good conformal character with surface of various curvatures. Due to the attractive performance on strong absorption in the whole K-bands, flexible and easy conformal, our design exhibits broad potential application in radar stealth and sensors.展开更多
According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is ...According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.展开更多
In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and ...In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and then is processed with a two-level sliding correlation algorithm for coarse timing synchronization and fine timing synchronization.After the SNR estimation,the signal is demodulated by an energy detection method.An integrated system level simulation model is established,and the performance of this system is evaluated over the AWGN channel,IEEE 802.15.3a CM1 and CM4 channels.The theoretical analysis and simulation results show that this UWB communication system can effectively reduce the sampling rate and signal processing speed at the receiver,and it is more suitable for long-distance and low-rate UWB communications with high spreading gain.展开更多
The analytic representation of the transient radiation for an aperture excited by a rectangle pulse is obtained. It shows that the field duration and amplitude depend on the observation distance, the elevation angle, ...The analytic representation of the transient radiation for an aperture excited by a rectangle pulse is obtained. It shows that the field duration and amplitude depend on the observation distance, the elevation angle, the pulse width of the rectangle pulse and the aperture size.展开更多
基金Supported by the National Natural Science Foundation of China(60905012,60572058)
文摘To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.
基金the Accelerator Laboratory of Tsinghua University for experiment supports
文摘A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF pulse compressor cavities,so that the power gain factor can be 3.2,which is supposed to multiply the RF power from 50 MW to 1 60 MW.In this paper,we report our work on C-band RF pulse compressor,namely the design simulation and cold test results.
基金Project supported by the Postdoctoral Science Foundation of China(Grant No.2014M552610)
文摘The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.
基金Supported by National Natural Science Foundation of China.
文摘The observation of Rabi sideband of Na atom shows the two-level dressed atom model is over simplified.Using a multi-level model and considering the time evolution of the laser pulse the experiment is well explained.
基金Project supported by the Guizhou Provincial Science and Technology Planning Project,China(Grant No.2018-5781)the National Natural Science Foundation of China(Grant No.51762010)+1 种基金the Guizhou Provincial Science and Technology Foundation,China(Grant Nos.2020-1Y021 and 2020-1Y271)the Guizhou Provincial High-level Innovative Talents,China(Grant No.2018-4006)。
文摘Theβ-Ga_(2)O_(3)films are prepared on polished Al_(2)O_(3)(0001)substrates by pulsed laser deposition at different oxygen partial pressures.The influence of oxygen partial pressure on crystal structure,surface morphology,thickness,optical properties,and photoluminescence properties are studied by x-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscope(SEM),spectrophotometer,and spectrofluorometer.The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure,the full width at half maximum(FWHM)and grain size increase.With the increase of oxygen pressure,the thickness of the films first increases and then decreases.The room-temperature UV-visible(UV-Vis)absorption spectra show that the bandgap of theβ-Ga_(2)O_(3)film increases from4.76 e V to 4.91 e V as oxygen pressure decreasing.Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm(~4.0 e V),360 nm(~3.44 e V),445 nm(~2.79 e V),and 467 nm(~2.66 e V),respectively.In addition,the total photoluminescence intensity decreases with oxygen pressure increasing,and it is found that the two UV bands are related to self-trapped holes(STHs)at O1 sites and between two O2-s sites,respectively,and the two blue bands originate from V_(Ga)^(2-)at Ga1 tetrahedral sites.The photoluminescence mechanism of the films is also discussed.These results will lay a foundation for investigating the Ga_(2)O_(3)film-based electronic devices.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. JD2020JGPY0010)the China Post-doctoral Science Foundation (Grant No. 2020M671834)the Anhui Province Post-doctoral Science Foundation, China (Grant No. 2020A397)。
文摘For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented based on frequencyselective surface(FSS). The absorber is composed of polyvinyl chloride(PVC) layer, polyimide(PI) layer, and poly tetra fluoro ethylene(PTFE) layer, with a sandwich structure of PVC–PI–PTFE–metal plate. Periodic conductive patterns play a crucial role in the absorber, and in traditional, it is designed on the upper surface of PI layer to form LC resonance. Different from commonly absorber, all the patterns are located on the lower surface of the PI layer in this work, and hence the impedance matching and absorptivity are improved in this purposed absorber. The flexible absorber with patterns on lower surface of the PI layer is compared with that on upper surface of the PI layer, the difference and the reasons are explained by absorption mechanism based on equivalent circuit model, and surface current density and electric field distribution are used to analyze resonance peaks. Absorptivity is greater than 90% in a frequency range of 10.47 GHz–45.44 GHz with relative bandwidth of 125.1%, covering the whole Ku, K, Ka, and some of X, U bands, especially containing the whole K bands from 12 GHz to 40 GHz. Radar cross section(RCS) is reduced at least 10 dB in 11.48 GHz–43.87 GHz frequency ranges,and absorption remained about 90% when the incident angle changed from 0°to 55°. The purposed absorber is fabricated,measured, and experiment results show good agreement with theoretical analysis and numerical simulation. After bonded on outer surface of different cylinders with diameters of 200 mm and 100 mm, the absorption of MMA is approximately reduced 10% and 20% respectively, which shows good conformal character with surface of various curvatures. Due to the attractive performance on strong absorption in the whole K-bands, flexible and easy conformal, our design exhibits broad potential application in radar stealth and sensors.
基金supported by the National Natural Science Foundation of China(Grant No.10904079)
文摘According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.
基金Supported by the National High Technology Research and Development Program of China(No.2009 AA011202,2009AA011205)the National Science and Technology Major Project of China(No.2009ZX03006-007)
文摘In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and then is processed with a two-level sliding correlation algorithm for coarse timing synchronization and fine timing synchronization.After the SNR estimation,the signal is demodulated by an energy detection method.An integrated system level simulation model is established,and the performance of this system is evaluated over the AWGN channel,IEEE 802.15.3a CM1 and CM4 channels.The theoretical analysis and simulation results show that this UWB communication system can effectively reduce the sampling rate and signal processing speed at the receiver,and it is more suitable for long-distance and low-rate UWB communications with high spreading gain.
文摘The analytic representation of the transient radiation for an aperture excited by a rectangle pulse is obtained. It shows that the field duration and amplitude depend on the observation distance, the elevation angle, the pulse width of the rectangle pulse and the aperture size.