This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal contr...This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.展开更多
Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed ...Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.展开更多
Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plicati...Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.展开更多
It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale app...It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.展开更多
The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization...The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.展开更多
This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solution...This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.展开更多
Wind-induced sand erosion is a natural process, and can have several negative impacts on human health, environment, and economy. To mitigate the wind-induced sand erosion, an environmental friendly technique that help...Wind-induced sand erosion is a natural process, and can have several negative impacts on human health, environment, and economy. To mitigate the wind-induced sand erosion, an environmental friendly technique that helps to bind soil particles is desirable. The microbially induced calcium carbonate precipitation(MICP) treatment has lately become renowned and a viable alternative to enhance the binding of sand particles(especially against wind erosion). The efficiency of Sporosarcina pasteurii bacteria in inducing calcite formation can be influenced by various factors, including the type of growth media used for bacterial culture. Most of the studies have mainly validated the efficiency of S. pasteurii bacteria usually under single growth media for the MICP treatment. However, the efficiency of S. pasteurii under different growth media on calcite formation is rarely explored. The current study explores the effect of S.pasteurii bacteria on calcite formation under the presence of three different growth media, namely,molasses(MS), tryptic soy broth(TB), and nutrient broth(NB). The three growth media have been applied in the laboratory with and without bacterial solution(control samples). Altered cementation media concentrations(0.5 and 1.0 M) with different pore volumes(PVs), namely, 0.25, 0.50, and 1.00 PV were used in sand-filled tubes for 7 and 14 treatment cycles(1 cycle=24 h). The pH and EC were measured for 12-h period in every 2 h interval, to monitor values at the time of treatment at room temperature. The calcite precipitation was confirmed using SEM(scanning electron microscope), PXRD(powder X-ray diffraction), and calcimeter tests. It was observed that MS generates lower calcite precipitation as compared with NB and TB. However, MS has the advantage of being more economical and abundant(waste product from sugar mills and refineries) as compared with other growth media(NB and TB). It was observed that the minimum and the maximum calcite precipitation using MS is 5% and 12%, respectively.The findings using MS in the present study was compared with the literature and found that precipitation of calcite using MS is effective to stabilize soil against wind erosion.展开更多
Polyvinyl alcohol (PVA) stabilized Polyvinyl acetate (PVAc) dispersions-based wood adhesive has poor water and heat resistance. Recently, the addition of fillers in the wood adhesive is one of the most effective ways ...Polyvinyl alcohol (PVA) stabilized Polyvinyl acetate (PVAc) dispersions-based wood adhesive has poor water and heat resistance. Recently, the addition of fillers in the wood adhesive is one of the most effective ways to enhance the performance of PVAc wood adhesive. Inorganic fillers have unique characteristics to improve the performance of adhesive, such as small size, high surface energy and surface hardness. Hence, the present work investigates the applicability of calcium carbonate and clay incorporated 3% in situ emulsion polymerization PVAc wood adhesive. Effect on physical, thermal and mechanical properties was studied by viscosity, pH, contact angle measurement, differential scanning calorimetry (DSC) and pencil hardness test of films. Emulsions with 3% calcium carbonate and 3% clay were prepared and the shear strength of the applied adhesive on wood was measured. The viscosity of the adhesives was reduced in the case of the addition of calcium carbonate and increased in the case of clay. The mechanical properties like tensile strength of adhesives with calcium carbonate and clay were measured by a universal tensile machine (UTM). Thermal stability was studied by differential scanning calorimetry (DSC). The tensile shear strength demonstrates that clay can improve bonding strength as compared to calcium carbonate of PVAc adhesive in wet conditions. The hardness of PVAc films was also changed positively by the addition of calcium carbonate and clay. Thermal stability of PVAc was significantly improved as calcium carbonate and clay were added to PVAc. Here, we did a comparative study of the effect of the addition of calcium carbonate and clay filler materials in situ polymerization of PVAc on their different properties.展开更多
The experimental processes are difficult to model by physical laws, because a multitude of factors can intervene simultaneously and are responsible for their instabilities and their random variations. Two types of fac...The experimental processes are difficult to model by physical laws, because a multitude of factors can intervene simultaneously and are responsible for their instabilities and their random variations. Two types of factors are to be considered;those that are easy to manipulate according to the objectives, and those that can vary randomly (uncontrollable factors). These could eventually divert the system from the desired target. It is, therefore, important to implement a system that is insensitive to fluctuations in factors that are difficult to control. The aim of this study is to optimize the synthesis of an apatitic calcium carbonate phosphate characterized with a Ca/P ratio equal to 1.61 by using the experimental design method based on the Taguchi method. In this process, five factors are considered and must be configured to achieve the previously defined objective. The temperature is a very important factor in the process, but difficult to control experimentally, so considered to be a problem factor (noise factor), forcing us to build a robust system that is insensitive to the last one. Therefore, a much simpler model to study the robustness of a synthetic solution with respect to temperature is developed. We have tried to parameterize all the factors considered in the process within a wide interval of temperature variation (60˚C - 90˚C). Temperature changes are no longer considered as a problem for apatitic calcium carbonate phosphate synthesis. In this finding, the proposed mathematical model is linear and efficient with very satisfactory statistical indicators. In addition, several simple solutions for the synthesis of carbonate phosphate are proposed with a Ca/P ratio equal to 1.61.展开更多
The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indi...The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.展开更多
Calcium carbonate was synthesized in a CaCl2/NaCO3 mixed solution by using ethylenediaminetetraacetic acid (EDTA) as an additive. The thermodynamics and kinetics analyses indicate that although the driving force of ...Calcium carbonate was synthesized in a CaCl2/NaCO3 mixed solution by using ethylenediaminetetraacetic acid (EDTA) as an additive. The thermodynamics and kinetics analyses indicate that although the driving force of amorphous calcium carbonate (ACC) precipitation is always less than that of calcite and vaterite precipitation, the nucleation rate of ACC is greater than that of calcite and vaterite at the initial stage of the precipitation reaction. With the increasing incubation time, vaterite and calcite particles nucleate heterogeneously by using the as-formed particles as active sites. Scanning electron microscopy images indicate that the transformation mechanism of ACC and vaterite to calcite is the dissolution-recrystallisation reaction. The presence of EDTA not only improves the stabilities of ACC and vaterite, but also leads to forming enlongated, connected rhombohedral calcite crystals after incubation 7 days in solutions. The ACC and vaterite are stabler in air than in solutions at room temperature, although the dissolution-recrystallisation reaction occurs on the surface.展开更多
The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was studied. The mechanism of the preparation process was proposed. The new mineral composite material was...The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was studied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanoehemieal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respectively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification. The hiding power and oil absorption of this new material were 29.12 g/m^2 and 23.30%, respectively. The results show that the modification is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be improved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.展开更多
Calcium carbonates are commonly administered as supplements for conditions of calcium deficiency.We report here pharmacokinetic characteristics of a novel formulation,calcium carbonate compound granules(CCCGs).forming...Calcium carbonates are commonly administered as supplements for conditions of calcium deficiency.We report here pharmacokinetic characteristics of a novel formulation,calcium carbonate compound granules(CCCGs).forming complexes of calcium carbonate and calcium citrate in water.CCCGs were compared to a kind of commonly?used calcium carbonate preparation(CC)in the market in 5-week-old mice that had been treated with omeprazole,to suppress gastric acid secretion,and in untreated control mice.The results showed that:(1)CCCGs had better water solubility than CC in vitro;(2)In control mice,calcium absorption rates after CCCGs administration were comparable to those after CC administration;(3)Inhibition of gastric acid secretion did not affect calcium absorption after CCCGs,but moderately decreased it after CC;(4)The presence of phytic acid or tannin did not affect calcium absorption rates after CCCGs but did for CC;and(5)In nonnal mice,CCCGs did not inhibit gastric emptying and intestinal propulsion,and did not alter the gastrointestinal honnones.The results suggest that CCCGs may be therapeutically advantageous over more commonly used calcium supplement formulations,particularly for adolescents,because of their stable calcium absorption characteristics and their relatively favorable adverse effect profile.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, ...The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate.展开更多
Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl ...Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.展开更多
Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Red...Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Redfern's equation was used to determine the apparent activation energy and the pre-exponential factors. The mechanism of thermal decomposition was evaluated using the master plots, Coats and Redfern's equation and the kinetic compensation law. It was found that the thermal decomposition property of nano-sized calcium carbonate was different from that of bulk calcite. Nano-sized calcium carbonate began to decompose at 640℃, which was 180℃lower than the reported value for calcite. The experimental results of kinetics were compatible with the mechanism of one-dimensional phase boundary movement. The apparent activation energy of nano-sized calcium carbonate was estimated to be 151kJ·mol-1 while the literature value for normal calcite was approximately 200kJ·mol-1. The order of magnitude of pre-exponential factors was estimated to be 10~9 s-1.展开更多
The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano ca...The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.展开更多
The production of polyvinyl chloride by calcium carbide method is a typical chemical process with high coal consumption,leading to massive flue gas and carbide slag emissions.Currently,the carbide slag with high CaO c...The production of polyvinyl chloride by calcium carbide method is a typical chemical process with high coal consumption,leading to massive flue gas and carbide slag emissions.Currently,the carbide slag with high CaO content is usually stacked in residue field,easily draining away with the rain and corroding the soil.In this work,we coupled the treatment of flue gas and carbide slag to propose a facile CO_(2)mineralization route to prepare light calcium carbonate.And the route feasibility was comprehensively evaluated via experiments and simulation.Through experimental investigation,the Ca^(2+) leaching and mineralization reaction parameters were determined.Based on the experiment,a process was built and optimized through Aspen Plus,and the energy was integrated to obtain the overall process energy and material consumption.Finally,the net CO_(2)emission reduction rate of the entire process through the life-cycle assessment method was analyzed.Moreover,the relationship between the parameters and the CO_(2)emission life-cycle assessment was established.The final optimization results showed that the mineralization process required 1154.69 kW·h·(t CO_(2))^(-1) of energy(including heat energy of 979.32 kW·h·(t CO_(2))^(-1) and electrical energy of 175.37 kW·h·(t CO_(2))^(-1)),and the net CO_(2)emission reduction rate was 35.8%.The light CaCO_(3)product can be sold as a high value-added product.According to preliminary economic analysis,the profit of mineralizing can reach more than 2,100 CNY·(t CO_(2))^(-1).展开更多
A slightly acidic hot spring named "Female Tower"(t=73.5°C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, southwestern China. The precipitates in the hot spring are composed of large amo...A slightly acidic hot spring named "Female Tower"(t=73.5°C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, southwestern China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite and sulfur. Scanning electron microscopy(SEM) analyses reveal that the microbial mats were formed from various coccoid or rod-shaped filamentous microbes. Transmission electron microscopy(TEM) shows that the intracellular sulfur granules are commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrates that the majority of the bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration is up to 60 ppm, while SO4-(2-) concentration is only about 10 ppm. We speculate that H2S might derive from sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. Meanwhile, this reaction increased the p H in the micronscale microdomains, which fosters the precipitation of calcium carbonate in the microbial mats. The results of this study indicate that the sulfur-oxidizing bacteria might play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.展开更多
文摘This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.
基金supported by the National Key Research Center and Development Program of the 14th Five-Year Plan,China(No.2022YFC2905105)National Natural Science Foundation of China(Nos.52122406 and 52004337)+2 种基金Hunan High-tech Industry Technology Innovation Leading Plan,China(No.2022GK4056)Hunan Innovative Province Construction Special Project,China(No.2020RC3001)Hunan Postgraduate Research and Innovation Project,China(No.CX20220200).
文摘Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.
文摘Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.
基金supported by the Liaoning Provincial Natural Science Foundation Joint Fund for Innovation Capability Improvement(2021-NLTS-12-02)Key Research and Local Service Projects of the Liaoning Provincial Department of Education(LDB2019005).
文摘It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.
基金supported by the National Natural Science Foundation of China(12272329)the Sichuan University Student Innovation and Entrepreneurship Training Program(S202110619066)+2 种基金the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)the Undergraduate Innovation Fund Project by Southwest University of Science and Technology(CX21-098)the NHC Key Laboratory of Nuclear Technology Medical Transformation(Mianyang Central Hospital)(21HYX019)。
文摘The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.
基金funded by“Natural Science Foundation of Anhui Province,Grant No.2008085QC130”.
文摘This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.
基金the Prestige Institute of Engineering, Management, and Research (PIEMR), Indore, India, for their support during the research work。
文摘Wind-induced sand erosion is a natural process, and can have several negative impacts on human health, environment, and economy. To mitigate the wind-induced sand erosion, an environmental friendly technique that helps to bind soil particles is desirable. The microbially induced calcium carbonate precipitation(MICP) treatment has lately become renowned and a viable alternative to enhance the binding of sand particles(especially against wind erosion). The efficiency of Sporosarcina pasteurii bacteria in inducing calcite formation can be influenced by various factors, including the type of growth media used for bacterial culture. Most of the studies have mainly validated the efficiency of S. pasteurii bacteria usually under single growth media for the MICP treatment. However, the efficiency of S. pasteurii under different growth media on calcite formation is rarely explored. The current study explores the effect of S.pasteurii bacteria on calcite formation under the presence of three different growth media, namely,molasses(MS), tryptic soy broth(TB), and nutrient broth(NB). The three growth media have been applied in the laboratory with and without bacterial solution(control samples). Altered cementation media concentrations(0.5 and 1.0 M) with different pore volumes(PVs), namely, 0.25, 0.50, and 1.00 PV were used in sand-filled tubes for 7 and 14 treatment cycles(1 cycle=24 h). The pH and EC were measured for 12-h period in every 2 h interval, to monitor values at the time of treatment at room temperature. The calcite precipitation was confirmed using SEM(scanning electron microscope), PXRD(powder X-ray diffraction), and calcimeter tests. It was observed that MS generates lower calcite precipitation as compared with NB and TB. However, MS has the advantage of being more economical and abundant(waste product from sugar mills and refineries) as compared with other growth media(NB and TB). It was observed that the minimum and the maximum calcite precipitation using MS is 5% and 12%, respectively.The findings using MS in the present study was compared with the literature and found that precipitation of calcite using MS is effective to stabilize soil against wind erosion.
文摘Polyvinyl alcohol (PVA) stabilized Polyvinyl acetate (PVAc) dispersions-based wood adhesive has poor water and heat resistance. Recently, the addition of fillers in the wood adhesive is one of the most effective ways to enhance the performance of PVAc wood adhesive. Inorganic fillers have unique characteristics to improve the performance of adhesive, such as small size, high surface energy and surface hardness. Hence, the present work investigates the applicability of calcium carbonate and clay incorporated 3% in situ emulsion polymerization PVAc wood adhesive. Effect on physical, thermal and mechanical properties was studied by viscosity, pH, contact angle measurement, differential scanning calorimetry (DSC) and pencil hardness test of films. Emulsions with 3% calcium carbonate and 3% clay were prepared and the shear strength of the applied adhesive on wood was measured. The viscosity of the adhesives was reduced in the case of the addition of calcium carbonate and increased in the case of clay. The mechanical properties like tensile strength of adhesives with calcium carbonate and clay were measured by a universal tensile machine (UTM). Thermal stability was studied by differential scanning calorimetry (DSC). The tensile shear strength demonstrates that clay can improve bonding strength as compared to calcium carbonate of PVAc adhesive in wet conditions. The hardness of PVAc films was also changed positively by the addition of calcium carbonate and clay. Thermal stability of PVAc was significantly improved as calcium carbonate and clay were added to PVAc. Here, we did a comparative study of the effect of the addition of calcium carbonate and clay filler materials in situ polymerization of PVAc on their different properties.
文摘The experimental processes are difficult to model by physical laws, because a multitude of factors can intervene simultaneously and are responsible for their instabilities and their random variations. Two types of factors are to be considered;those that are easy to manipulate according to the objectives, and those that can vary randomly (uncontrollable factors). These could eventually divert the system from the desired target. It is, therefore, important to implement a system that is insensitive to fluctuations in factors that are difficult to control. The aim of this study is to optimize the synthesis of an apatitic calcium carbonate phosphate characterized with a Ca/P ratio equal to 1.61 by using the experimental design method based on the Taguchi method. In this process, five factors are considered and must be configured to achieve the previously defined objective. The temperature is a very important factor in the process, but difficult to control experimentally, so considered to be a problem factor (noise factor), forcing us to build a robust system that is insensitive to the last one. Therefore, a much simpler model to study the robustness of a synthetic solution with respect to temperature is developed. We have tried to parameterize all the factors considered in the process within a wide interval of temperature variation (60˚C - 90˚C). Temperature changes are no longer considered as a problem for apatitic calcium carbonate phosphate synthesis. In this finding, the proposed mathematical model is linear and efficient with very satisfactory statistical indicators. In addition, several simple solutions for the synthesis of carbonate phosphate are proposed with a Ca/P ratio equal to 1.61.
基金Project(51374249)supported by the National Natural Science Foundation of China
文摘The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.
文摘Calcium carbonate was synthesized in a CaCl2/NaCO3 mixed solution by using ethylenediaminetetraacetic acid (EDTA) as an additive. The thermodynamics and kinetics analyses indicate that although the driving force of amorphous calcium carbonate (ACC) precipitation is always less than that of calcite and vaterite precipitation, the nucleation rate of ACC is greater than that of calcite and vaterite at the initial stage of the precipitation reaction. With the increasing incubation time, vaterite and calcite particles nucleate heterogeneously by using the as-formed particles as active sites. Scanning electron microscopy images indicate that the transformation mechanism of ACC and vaterite to calcite is the dissolution-recrystallisation reaction. The presence of EDTA not only improves the stabilities of ACC and vaterite, but also leads to forming enlongated, connected rhombohedral calcite crystals after incubation 7 days in solutions. The ACC and vaterite are stabler in air than in solutions at room temperature, although the dissolution-recrystallisation reaction occurs on the surface.
文摘The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was studied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanoehemieal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respectively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification. The hiding power and oil absorption of this new material were 29.12 g/m^2 and 23.30%, respectively. The results show that the modification is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be improved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.
文摘Calcium carbonates are commonly administered as supplements for conditions of calcium deficiency.We report here pharmacokinetic characteristics of a novel formulation,calcium carbonate compound granules(CCCGs).forming complexes of calcium carbonate and calcium citrate in water.CCCGs were compared to a kind of commonly?used calcium carbonate preparation(CC)in the market in 5-week-old mice that had been treated with omeprazole,to suppress gastric acid secretion,and in untreated control mice.The results showed that:(1)CCCGs had better water solubility than CC in vitro;(2)In control mice,calcium absorption rates after CCCGs administration were comparable to those after CC administration;(3)Inhibition of gastric acid secretion did not affect calcium absorption after CCCGs,but moderately decreased it after CC;(4)The presence of phytic acid or tannin did not affect calcium absorption rates after CCCGs but did for CC;and(5)In nonnal mice,CCCGs did not inhibit gastric emptying and intestinal propulsion,and did not alter the gastrointestinal honnones.The results suggest that CCCGs may be therapeutically advantageous over more commonly used calcium supplement formulations,particularly for adolescents,because of their stable calcium absorption characteristics and their relatively favorable adverse effect profile.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
基金Funded by the National Natural Science Foundation of China(No.51178104)333 Project of JiangsuPhD Program’s Foundation of Ministry of Education of China(No.20110092110033)
文摘The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate.
文摘Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.
基金Supported by the Key Research of Science & Technology of Education(No.0202)and the Fundamental Research Plan of HuoYingdong(No.81063).
文摘Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Redfern's equation was used to determine the apparent activation energy and the pre-exponential factors. The mechanism of thermal decomposition was evaluated using the master plots, Coats and Redfern's equation and the kinetic compensation law. It was found that the thermal decomposition property of nano-sized calcium carbonate was different from that of bulk calcite. Nano-sized calcium carbonate began to decompose at 640℃, which was 180℃lower than the reported value for calcite. The experimental results of kinetics were compatible with the mechanism of one-dimensional phase boundary movement. The apparent activation energy of nano-sized calcium carbonate was estimated to be 151kJ·mol-1 while the literature value for normal calcite was approximately 200kJ·mol-1. The order of magnitude of pre-exponential factors was estimated to be 10~9 s-1.
文摘The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.
基金the support from National Natural Science Foundation of China(22078208)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0025)China Chengda Engineering Co.,Ltd.for its software support。
文摘The production of polyvinyl chloride by calcium carbide method is a typical chemical process with high coal consumption,leading to massive flue gas and carbide slag emissions.Currently,the carbide slag with high CaO content is usually stacked in residue field,easily draining away with the rain and corroding the soil.In this work,we coupled the treatment of flue gas and carbide slag to propose a facile CO_(2)mineralization route to prepare light calcium carbonate.And the route feasibility was comprehensively evaluated via experiments and simulation.Through experimental investigation,the Ca^(2+) leaching and mineralization reaction parameters were determined.Based on the experiment,a process was built and optimized through Aspen Plus,and the energy was integrated to obtain the overall process energy and material consumption.Finally,the net CO_(2)emission reduction rate of the entire process through the life-cycle assessment method was analyzed.Moreover,the relationship between the parameters and the CO_(2)emission life-cycle assessment was established.The final optimization results showed that the mineralization process required 1154.69 kW·h·(t CO_(2))^(-1) of energy(including heat energy of 979.32 kW·h·(t CO_(2))^(-1) and electrical energy of 175.37 kW·h·(t CO_(2))^(-1)),and the net CO_(2)emission reduction rate was 35.8%.The light CaCO_(3)product can be sold as a high value-added product.According to preliminary economic analysis,the profit of mineralizing can reach more than 2,100 CNY·(t CO_(2))^(-1).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB06060200)the National Natural Science Foundation of China (grants 41403050)
文摘A slightly acidic hot spring named "Female Tower"(t=73.5°C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, southwestern China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite and sulfur. Scanning electron microscopy(SEM) analyses reveal that the microbial mats were formed from various coccoid or rod-shaped filamentous microbes. Transmission electron microscopy(TEM) shows that the intracellular sulfur granules are commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrates that the majority of the bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration is up to 60 ppm, while SO4-(2-) concentration is only about 10 ppm. We speculate that H2S might derive from sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. Meanwhile, this reaction increased the p H in the micronscale microdomains, which fosters the precipitation of calcium carbonate in the microbial mats. The results of this study indicate that the sulfur-oxidizing bacteria might play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.