A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a...A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K.展开更多
Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesi...Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesized with data from other meteorological sites, NCEP reanalysis and MAIAC retrieved aerosol optical depths data to analyze the role of mesoscale processes and radiation on air quality. Under weak large-scale forcing mountain-valley circulations develop that are driven by the differences in insolation. During the long dark nights, radiative cooling occurs in the near-surface layer of the mountain slopes of the Brooks, Ogilvie and White Mountains Ranges and at the bottom of the valley. Here surface-based inversions (SBI)—known as roof-top inversions—forms, while the cold air drains from the slopes. A frontal wedge forms when the cold air slides over the relatively colder air in the valley. Drainage of cold air from the Brooks Range governed the circulation and cold air pooling in the valley. Concentrations during times with and without SBI differed significantly (at 95% confidence) at two sites indicating that local emissions were the major contributor. At the site, which is closest to the mountains, concentrations marginally changed in the presence of inversions. At all sites, 24-h mean PM2.5 remained below the National Ambient Air Quality Standard.展开更多
基金Project(50675133)supported by the National Natural Science Foundation of ChinaProject(2006CB705401)supported by the National Basic Research Program of China
文摘A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K.
基金the Tribal Resilience Program,NASA grant#80NSSC19K0981 and the State of Alaska for financial support of this study
文摘Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesized with data from other meteorological sites, NCEP reanalysis and MAIAC retrieved aerosol optical depths data to analyze the role of mesoscale processes and radiation on air quality. Under weak large-scale forcing mountain-valley circulations develop that are driven by the differences in insolation. During the long dark nights, radiative cooling occurs in the near-surface layer of the mountain slopes of the Brooks, Ogilvie and White Mountains Ranges and at the bottom of the valley. Here surface-based inversions (SBI)—known as roof-top inversions—forms, while the cold air drains from the slopes. A frontal wedge forms when the cold air slides over the relatively colder air in the valley. Drainage of cold air from the Brooks Range governed the circulation and cold air pooling in the valley. Concentrations during times with and without SBI differed significantly (at 95% confidence) at two sites indicating that local emissions were the major contributor. At the site, which is closest to the mountains, concentrations marginally changed in the presence of inversions. At all sites, 24-h mean PM2.5 remained below the National Ambient Air Quality Standard.