期刊文献+
共找到471篇文章
< 1 2 24 >
每页显示 20 50 100
Ultra-fine ferrite grains obtained in the TSDR process 被引量:1
1
作者 Ling Zhang Wangyue Yang +1 位作者 Chunxia Xue Zuqing Sun 《Journal of University of Science and Technology Beijing》 CSCD 2008年第5期568-573,共6页
By careful design of rolling schedule,ultra-fine (~2μm) ferrite grains in a low carbon high niobium (0.09wt%Nb) microalloying steel with average austenite grain sizes above 800 μm can be achieved in the simulat... By careful design of rolling schedule,ultra-fine (~2μm) ferrite grains in a low carbon high niobium (0.09wt%Nb) microalloying steel with average austenite grain sizes above 800 μm can be achieved in the simulated thin slab direct rolling process. The 5-pass deformation was divided into two stages: the refinement of austenite through complete recrystallization and the refinement of ferrite through dynamic strain-induced transformation. The effects of Nb in solution and strain-induced NbCN precipitates on the ferrite transformation were also extensively discussed. 展开更多
关键词 ultra-fine ferrite NIOBIUM PRECIPITATION AUSTENITE RECRYSTALLIZATION thin slab direct rolling
下载PDF
Research on Heredity of Coarse Ferrite Grains
2
作者 Wangzhan FAN Weimin GUI Youfeng CHEN 《Research and Application of Materials Science》 2024年第1期5-8,共4页
The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite gra... The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite grains,as well as the influence of the ferrite grain size on the main technical indicators of gas carburizing.The results show that coarse ferrite grains may not necessarily cause the coarse austenite grains,but may result in mixed austenite grains.After annealing treatment,the coarse ferrite grains can be significantly refined and homogenized.Moreover,the coarse ferrite grains have no significant effects on hardnessand intergranular oxidationof gas carburizing. 展开更多
关键词 grain size coarse ferrite grains AUSTENITE gas carburizing
下载PDF
Preparation of ultra-fine grain Ni-Al-WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing 被引量:4
3
作者 熊拥军 邱子力 +3 位作者 李瑞迪 袁铁锤 吴宏 刘锦辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3685-3693,共9页
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele... The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect. 展开更多
关键词 laser clad friction stir processing Ni-Al-WC coating ultra-fine grain interlocking bonding
下载PDF
Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam 被引量:2
4
作者 谈军 周张健 +4 位作者 朱小鹏 郭双全 屈丹丹 雷明凯 葛昌纯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1081-1085,共5页
Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of... Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten. 展开更多
关键词 TUNGSTEN tungsten alloy ultra-fine grain surface effects thermal shock transient high heat flux
下载PDF
MODELING OF FERRITE GRAIN GROWTH OF LOW CARBON STEELS DURING HOT ROLLING 被引量:4
5
作者 Y.T. Zhang, D.Z. Li and Y.Y. LiInstitute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China Manuscript received 26 December 2001 in revised form 9 February 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第3期267-271,共5页
For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot roll... For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot rolling. By using this model, the initial ferrite grain size after continuous cooling and ferrite grain growing in coiling procedure can be predicted. In-plant trials were performed in the hot strip mill of Ansteel. The calculated final ferrite grain sizes are in good agreement with the experimental ones. It is helpful both for simulation of microstructure evolution and prediction of mechanical properties. 展开更多
关键词 ferrite Forecasting grain growth Hot rolling Iron and steel plants Mathematical models Mechanical properties
下载PDF
Surface Ferrite Grain Refinement and Mechanical Properties of Low Carbon Steel Plates 被引量:4
6
作者 FAN Jian-wen DAI Xiao-li +2 位作者 XIE Rui-ping ZHANG Wei-xu WANG Zu-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第4期35-39,共5页
Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemi... Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased. 展开更多
关键词 TMCP fine grained ferrite plain low carbon steel plate mechanical property
下载PDF
Microstructures of ultra-fine grained FeCoV alloys processed by ECAP plus cold rolling and their evolutions during tempering 被引量:5
7
作者 伍来智 陈军 +1 位作者 杜忠泽 王经涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期602-606,共5页
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a... A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K. 展开更多
关键词 FeCoV alloy equal channel angular pressing cold rolling ultra-fine grain
下载PDF
Isothermal Growth Kinetics of Ultra-fine Austenite Grains in a Nb-V-Ti Microalloyed Steel 被引量:4
8
作者 Shengjie Yao Linxiu Du Xianghua Liu Guodong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期615-618,共4页
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s... Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains. 展开更多
关键词 ultra-fine austenite grain grain growth kinetics Microalloyed steel
下载PDF
Development of grain boundary allotriomorphic ferrite/granular bainite duplex steel 被引量:5
9
作者 PingguangXu BingzheBai +3 位作者 HongshengFang ZhenjiaWang JianpingWang YongkunPan 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期39-44,共6页
A new hot-rolled low alloy high strength steel with grain boundaryallotriomorphic ferrite/granular bainite duplex microstructure has been developed through novelmicrostructure and alloying designs without any noble me... A new hot-rolled low alloy high strength steel with grain boundaryallotriomorphic ferrite/granular bainite duplex microstructure has been developed through novelmicrostructure and alloying designs without any noble metal elements such as nickel and molybdenum.Its as-rolled microstructure and mechanical properties, fatigue crack propagation behavior comparedwith single granular bainitic steel as well as continuous cooling transformation, were investigatedin detail. The measured result of CCT (continuous cooling transformation) curve shows that suchduplex microstructure can be easily obtained within a wide air-cooling rate range. More importantly,this duplex microstructure has much better combination of toughness and strength than the singlegranular bainite microstructure. It is found that the grain boundary allotriomorphic ferrite in thisduplex microstructure can blunt the microcrack tip, cause fatigue crack propagation route branchingand curving, and thus it increases the resistance to fatigue crack propagation, improves steeltoughness. The mechanical properties of the above commercial duplex steel plates have achieved orexceeded 870 MPa ultimate tensile strength, 570 MPa yield strength, 18 percent elongation and 34 JCharpy V-notch impact energy at -40 deg C, showing good development potential. 展开更多
关键词 grain boundary allotriomorphic ferrite granular bainite duplexmicrostructure high strength steel
下载PDF
Improving the Fatigue Performance of the Welded Joints of Ultra-Fine Grain Steel by Ultrasonic Peening 被引量:5
10
作者 王东坡 王婷 +1 位作者 霍立兴 张玉凤 《Transactions of Tianjin University》 EI CAS 2004年第2期113-117,共5页
Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The... Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening. 展开更多
关键词 fatigue strength ultrasonic peening welded joints ultra-fine grain steel
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
11
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 grain boundary engineering ferritic/martensitic steel Prior austenite grain boundary character distribution grain boundary connectivity Intergranular damage resistance
下载PDF
Effect of welding heat input on HAZ character in ultra-fine grain steel welding 被引量:3
12
作者 张富巨 许卫刚 +3 位作者 王玉涛 王燕 张学刚 廖永平 《China Welding》 EI CAS 2003年第2期122-127,共6页
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w... In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding. 展开更多
关键词 heat input heat-affected zone ultra-fine grain steel ultra narrow-gap welding
下载PDF
Observations on the Formation of Ultrafine Ferrite Grain Size in Steels by Physical Simulation Routes 被引量:1
13
作者 L.X. Pan L.P. Karjalainen M. C. Somani 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期112-114,共3页
Some observations are reported on the simulation of two thermomechanical routes to produce ultrafine ferrite grainsize in steels. One C-Mn grade and Nb, Nb-Ti and Nb-high Ti bearing steels were used in the tests perfo... Some observations are reported on the simulation of two thermomechanical routes to produce ultrafine ferrite grainsize in steels. One C-Mn grade and Nb, Nb-Ti and Nb-high Ti bearing steels were used in the tests performed ona Gleeble simulator and a laboratory rolling mill. The routes included severe hot deformation of prior grain-refinedaustenite at the temperature close to Ar3 (DIF) and static recrystallization of fine-grained cold-rolled martensite(SRM). It was observed that the hot deformation induces the formation of ferrite above the Ar3 temperature of thesteel, but severe reductions are required for the complete transformation. Strain of 1.2 can result in about 70% offerrite with the grain size of about 1.4~2μm in all the studied steels. Similarly, in short annealing of cold-workedmartensite, the static recrystallization can also lead to a grain size of about 1.5 μm. The distribution of carbonvaries in the microstructures, carbon being in the second phase in the DIF route and in carbide particles in the SRMroute, which may have a significant influence on the mechanical properties and the thermal stability of ultrafine grainstructure. 展开更多
关键词 ULTRAFINE grain size Steels Physical simulation Strain-induced ferrite Cold ROLLING and ANNEALING
下载PDF
Microstructural Evolution and Thermal Stability of Ultra-fine Grained Al-4Mg Alloy by Equal Channel Angular Pressing 被引量:1
14
作者 HongbinGENG SubbongKANG ShiyuHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期315-318,共4页
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o... Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h. 展开更多
关键词 Aluminum alloy Equal channel angular pressing ultra-fine grain Microstructural stability
下载PDF
Effect of upsetting force on microstructure of welds in resistance spot welding of 400 MPa ultra-fine grain steel 被引量:1
15
作者 Deng Lipeng Ke Liming +1 位作者 Liu Jinhe Ji Chuntao 《China Welding》 EI CAS 2016年第2期76-82,共7页
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than... The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal. 展开更多
关键词 ultra-fine grain steel resistance spot welding MICROSTRUCTURE mechanical property
下载PDF
Sintering process and grain growth of Mn-Zn ferrite nanoparticles
16
作者 WANG Xin CUI Yinfang WANG Yongming HAO Shunli LIU Chunjing 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期526-530,共5页
The density, microstructure and magnetic properties of non-doped Mn-Zn ferrite nanoparticles sintered compacts were investigated. The compacts of non-doped Mn-Zn ferrite nanoparticles were sintered by segmented-sinter... The density, microstructure and magnetic properties of non-doped Mn-Zn ferrite nanoparticles sintered compacts were investigated. The compacts of non-doped Mn-Zn ferrite nanoparticles were sintered by segmented-sintering process at lower sintering temperature. The density of sintered samples was measured by Archimedes method, and the phase composition and microstructure were examined by XRD and SEM. The sintered Mn-Zn ferrite magnetic measurements were carried out with Vibrating Sample. The results show that the density of sintered compacts increases with the rising of sintering temperature, achieving 4.8245 g·cm-3 when sintered at 900 ℃, which is the optimal density of Mn-Zn functional ferrite needed and from the fractured surface of sintered samples, it can be seen that the grain grows well with small grain size and homogeneous distribution. 展开更多
关键词 Mn-Zn ferrite sintering temperature grain growth DENSITY magnetic properties
下载PDF
Grain Size Prediction after Continuous Cooling Transformation from Deformed Austenite to Ferrite
17
作者 Qu Jinbo Wang Zhaodong +1 位作者 Liu Xianghua Wang Guodong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1998年第2期42-44,共3页
On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated... On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated results of computer simulation with the algorithm are in so good agreement with the measured ones in controlled rolling and controlled cooling experiments that the theoretical algorithm is feasible. 展开更多
关键词 ferrite grain size transformation kinetics continuous cooling deformed austenite
下载PDF
Surface Cracking Behaviors of Ultra-Fine Grained Tungsten Under Edge Plasma Loading in the HT-7 Tokamak
18
作者 朱大焕 刘洋 +2 位作者 陈俊凌 周张健 鄢容 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第6期605-608,共4页
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re... Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition. 展开更多
关键词 ultra-fine grain tungsten plasma facing materials cracking behaviors plasma irradiation
下载PDF
Investigation on fracture behavior of the welded joint HAZ of ultra-fine grain steel SS400
19
作者 朱政强 陈立功 +3 位作者 荆洪阳 葛景国 倪纯珍 饶德林 《China Welding》 EI CAS 2003年第2期142-145,共4页
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel... The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM). 展开更多
关键词 ultra-fine grain steel fitness for purpose general yielding FEM
下载PDF
Effect of Strain Ratio on Fatigue Model of Ultra-fine Grained Pure Titanium
20
作者 QIANG Meng YANG Xirong +1 位作者 LIU Xiaoyan LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1169-1178,共10页
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life... The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude. 展开更多
关键词 ultra-fine grained pure titanium low cycle fatigue life model mean stress relaxation mode strain ratio fracture morphology
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部